• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The predetermination of favorable exhaust stack lengths for two-stroke cycle internal combustion engines

Woerner, William Connor. January 1937 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1937. / Typescript. Includes bibliographical references (leaf 51).
2

Performance comparison of loop and cross scavenged two-cycle engines

Humpal, Edwin F. January 1961 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1961. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 72-73).
3

An experimental study of the effect of heat transfer on steady flow through a poppet intake valve

Kapadia, Dinesh Navinchand, January 1966 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1966. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
4

Improving environmental protection within the Nigerian oil and gas industry : long term national solutions, short term international solutions?

Morocco-Clarke, Susan Ayodele January 2012 (has links)
This thesis carries out a comparative analysis between the modes of operation adopted in the oil and gas industries of Nigeria and developed countries (with an emphasis on the UK), examining in the process, the existing and persistent problem of pollution which has plagued the Nigerian State and gone virtually unchecked for over five decades, and dealing with the lacunae in the law currently in place in Nigeria. This analysis is carried out to ascertain the possibility of improving environmental protection in Nigeria. A course is charted through the history and development of the Nigerian oil and gas industry, extensively reviewing the environmental legal regime adopted in Nigeria, with particular reference to the oil and gas industry. Issues concerning inadequacy of legislation are addressed as well as the knotty problem of proper enforcement and indeed compliance within the industry. Also addressed is the extent to which flaring is a significant problem in Nigeria, as this is responsible not only for huge amounts of environmental pollution, but also for the loss of a considerable amount of revenue for the Nigerian government and populace. Furthermore, this thesis considers the difficulty the Nigerian judiciary has in maintaining its impartiality and the problems of corruption as well as the judicial approaches to powerful economic actors. Parallels of the Nigerian oil industry are drawn with the exploration and production processes of oil companies operating in the United Kingdom. As a consequence, this work puts forward possible solutions for the adoption of sustainable practices successfully utilised in developed countries which have not been replicated in Nigeria.
5

An Investigation of Regional Variations of Barnett Shale Reservoir Properties, and Resulting Variability of Hydrocarbon Composition and Well Performance

Tian, Yao 2010 May 1900 (has links)
In 2007, the Barnett Shale in the Fort Worth basin of Texas produced 1.1 trillion cubic feet (Tcf) gas and ranked second in U.S gas production. Despite its importance, controls on Barnett Shale gas well performance are poorly understood. Regional and vertical variations of reservoir properties and their effects on well performances have not been assessed. Therefore, we conducted a study of Barnett Shale stratigraphy, petrophysics, and production, and we integrated these results to clarify the controls on well performance. Barnett Shale ranges from 50 to 1,100 ft thick; we divided the formation into 4 reservoir units that are significant to engineering decisions. All but Reservoir Unit 1 (the lower reservoir unit) are commonly perforated in gas wells. Reservoir Unit 1 appears to be clay-rich shale and ranges from 10 to 80 ft thick. Reservoir Unit 2 is laminated, siliceous mudstone and marly carbonate zone, 20 to 300 ft thick. Reservoir Unit 3 is composed of multiple, stacked, thin (~15-30 ft thick), upward coarsening sequences of brittle carbonate and siliceous units interbedded with ductile shales; thickness ranges from 0 to 500 ft. Reservoir Unit 4, the upper Barnett Shale is composed dominantly of shale interbedded with upward coarsening, laterally persistent, brittle/ductile sequences ranging from 0 to 100 ft thick. Gas production rates vary directly with Barnett Shale thermal maturity and structural setting. For the following five production regions that encompass most of the producing wells, Peak Monthly gas production from horizontal wells decreases as follows: Tier 1 (median production 60 MMcf) to Core Area to Parker County to Tier 2 West to Oil Zone-Montague County (median production 10 MMcf). The Peak Monthly oil production from horizontal wells is in the inverse order of gas production; median Peak Monthly oil production is 3,000 bbl in the Oil Zone-Montague County and zero in Tier 1. Generally, horizontal wells produce approximately twice as much oil and gas as vertical wells.This research clarifies regional variations of reservoir and geologic properties of the Barnett Shale. Result of these studies should assist operators with optimization of development strategies and gas recovery from the Barnett Shale.
6

An Investigation of Regional Variations of Barnett Shale Reservoir Properties, and Resulting Variability of Hydrocarbon Composition and Well Performance

Tian, Yao 2010 May 1900 (has links)
In 2007, the Barnett Shale in the Fort Worth basin of Texas produced 1.1 trillion cubic feet (Tcf) gas and ranked second in U.S gas production. Despite its importance, controls on Barnett Shale gas well performance are poorly understood. Regional and vertical variations of reservoir properties and their effects on well performances have not been assessed. Therefore, we conducted a study of Barnett Shale stratigraphy, petrophysics, and production, and we integrated these results to clarify the controls on well performance. Barnett Shale ranges from 50 to 1,100 ft thick; we divided the formation into 4 reservoir units that are significant to engineering decisions. All but Reservoir Unit 1 (the lower reservoir unit) are commonly perforated in gas wells. Reservoir Unit 1 appears to be clay-rich shale and ranges from 10 to 80 ft thick. Reservoir Unit 2 is laminated, siliceous mudstone and marly carbonate zone, 20 to 300 ft thick. Reservoir Unit 3 is composed of multiple, stacked, thin (~15-30 ft thick), upward coarsening sequences of brittle carbonate and siliceous units interbedded with ductile shales; thickness ranges from 0 to 500 ft. Reservoir Unit 4, the upper Barnett Shale is composed dominantly of shale interbedded with upward coarsening, laterally persistent, brittle/ductile sequences ranging from 0 to 100 ft thick. Gas production rates vary directly with Barnett Shale thermal maturity and structural setting. For the following five production regions that encompass most of the producing wells, Peak Monthly gas production from horizontal wells decreases as follows: Tier 1 (median production 60 MMcf) to Core Area to Parker County to Tier 2 West to Oil Zone-Montague County (median production 10 MMcf). The Peak Monthly oil production from horizontal wells is in the inverse order of gas production; median Peak Monthly oil production is 3,000 bbl in the Oil Zone-Montague County and zero in Tier 1. Generally, horizontal wells produce approximately twice as much oil and gas as vertical wells.This research clarifies regional variations of reservoir and geologic properties of the Barnett Shale. Result of these studies should assist operators with optimization of development strategies and gas recovery from the Barnett Shale.
7

A feasibility study on modeling and prediction of production behavior in naturally fractured shale reservoirs

Huls, Boyd T. January 2004 (has links)
Thesis (M.S.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains viii, 105 p. : ill. (some col.), map. Includes abstract. Includes bibliographical references (p. 96-97).
8

A comprehensive skin factor model for well completions based on finite element simulations

Furui, Kenji. Hill, A. D. January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: A. Daniel Hill. Vita. Includes bibliographical references.
9

The protection of indigenous peoples' lands from oil exploitation in emerging economies /

Wawryk, Alexandra Sophia. January 2000 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Law, 2001. / Bibliography: leaves 651-699.
10

Smart Technologies for Oil Production with Rod Pumping

Hansen, Brigham Wheeler 01 July 2018 (has links)
This work enables accelerated fluid recovery in oil and gas reservoirs by automatically controlling fluid height and bottomhole pressure in wells. Several literature studies show significant increase in recovered oil by determining a target bottomhole pressure but rarely consider how to control to that value. This work enables those benefits by maintaining bottomhole pressure or fluid height. Moving Horizon Estimation (MHE) determines uncertain well parameters using only common surface measurements. A Model Predictive Controller (MPC) adjusts the stroking speed of a sucker rod pump to maintain fluid height. Pump boundary conditions are simulated with Mathematical Programs with Complementarity Constraints (MPCCs) and a nonlinear programming solver finds a solution in near real-time. A combined rod string, well, and reservoir model simulate dynamic well conditions, and are formulated for simultaneous optimization by large-scale solvers. MPC increases cumulative oil production vs. conventional pump off control by maintaining an optimal fluid level height.

Page generated in 0.1251 seconds