• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MEA and GDE manufacture for electrolytic membrane characterisation / Henry Howell Hoek

Hoek, Henry Howell January 2013 (has links)
In recent years an emphasis has been placed on the development of alternative and clean energy sources to reduce the global use of fossil fuels. One of these alternatives entails the use of H2 as an energy carrier, which can be obtained amongst others using thermochemical processes, for example the hybrid sulphur process (HyS). The HyS process is based on the thermal decomposition of sulphuric acid into water, sulphur dioxide and oxygen. The subsequent chemical conversion of the sulphur dioxide saturated water back to sulphuric acid and hydrogen is achieved in an electrolyser using a platinum coated proton exchange membrane. This depolarised electrolysis requires a theoretical voltage of only 0.158 V compared to water electrolysis requiring approximately 1.23 V. One of the steps in the development of this technology at the North-West University, entailed the establishment of the platinum coating technology which entailed two steps; firstly using newly obtained equipment to manufacture the membrane electro catalyst assemblies (MEA’s) and gas diffusion electrodes (GDE’s) and secondly to test these MEA’s and GDE’s using sulphur dioxide depolarized electrolysis by comparing the manufactured MEA’s and GDE’s to commercially available MEA’s and GDE’s. Different MEA’s and GDE’s were manufactured using both a screen printing (for the microporous layer deposition) and a spraying technique. The catalyst loadings were varied as well as the type and thickness of the proton exchange membranes used. The proton exchange membranes that were included in this study were Nafion 117®, sPSU-PBIOO and SfS-PBIOO membranes whereas the gas diffusion layer consisted of carbon paper with varying thicknesses (EC-TP01-030 – 0.11 mm and EC-TP01-060 – 0.19mm). MEA and GDE were prepared by first preparing an ink that was used both for MEA and GDE spraying. The MEA’s were prepared by spraying various catalyst coatings onto the proton exchange membranes containing 0.3, 0.6 and 0.9 mg/cm2 platinum respectively. The GDE’s were first coated by a micro porous carbon layer using the screen printing technique in order to attain a suitable surface for catalyst deposition. Using the spraying technique GDE’s containing 0.3, 0.6, 0.9 mg/cm2 platinum were prepared. After SEM analysis, the MEA’s and GDE’s performance was measured using SO2 depolarized electrolysis. From the electrolysis experiments, the voltage vs. current density generated during operation, the hydrogen production, the sulphuric acid generation and the hydrogen production efficiency was obtained. From the results it became clear that while the catalyst loading had little effect on performance there were a number of factors that did have a significant influence. These included the type of proton exchange membrane, the membrane thickness and whether the catalyst coating was applied to the proton exchange membrane (MEA) or to the gas diffusion layer (GDE). During SO2 depolarized electrolysis VI curves were generated which gave an indication of the performance of the GDE’s and MEA’s. The best preforming GDE was GDE-3 (0.46V @ 320 mA/cm2), which included a GDE EC-TP01-060, while the best preforming MEA’s were NAF-4 (0.69V @ 320mA/cm2) consisting of a Nafion117 based MEA and PBI-1 (0.43V @ 320mA/cm2) made from a sPSU-PBIOO blended membrane. During hydrogen production it became clear that the GDE’s produced the most hydrogen (best was GDE-02 a in house manufactured GDE yielding 67.3 mL/min @ 0.8V), followed by the Nafion® MEA’s (best was NAF-4 a commercial MEA yielding 57.61 mL/min @ 0.74V) and the PBI based MEA’s. , (best was PBI-2 with 67.11 mL/min @ 0.88V). Due to the small amounts of acid produced and the SO2 crossover, a significant error margin was observed when measuring the amount of sulphuric acid produced. Nonetheless, a direct correlation could still be seen between the acid and the hydrogen production as had been expected from literature. The highest sulphuric acid concentrations produced using the tested GDE’s and MEA’s from this study were the in-house manufactured GDE-01 (3.572mol/L @ 0.8V), the commercial NAF-4 (4.456mol/L @ 0.64V) and the in-house manufactured PBI-2 (3.344mol/L @ 0.8V). The overall efficiency of the GDE’s were similar, ranging from less than 10% at low voltages (± 0.6V) increasing to approximately 60% at ± 0.8V. For the MEA’s larger variation was observed with NAF-4 reaching efficiencies of nearly 80% at 0.7V. In terms of consistency of performance it was shown that the Nafion MEA’s preformed most consistently followed by the GDE’s and lastly the PBI based MEA’s which for the PBI based membranes can probably be ascribed to the significant difference in thickness of the thin PBI vs. the Nafion based membranes. In summary the study has shown the results between the commercially obtained and the in-house manufactured GDE’s and MEA’s were comparable confirming the suitability of the coating techniques evaluated in this study. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014
2

MEA and GDE manufacture for electrolytic membrane characterisation / Henry Howell Hoek

Hoek, Henry Howell January 2013 (has links)
In recent years an emphasis has been placed on the development of alternative and clean energy sources to reduce the global use of fossil fuels. One of these alternatives entails the use of H2 as an energy carrier, which can be obtained amongst others using thermochemical processes, for example the hybrid sulphur process (HyS). The HyS process is based on the thermal decomposition of sulphuric acid into water, sulphur dioxide and oxygen. The subsequent chemical conversion of the sulphur dioxide saturated water back to sulphuric acid and hydrogen is achieved in an electrolyser using a platinum coated proton exchange membrane. This depolarised electrolysis requires a theoretical voltage of only 0.158 V compared to water electrolysis requiring approximately 1.23 V. One of the steps in the development of this technology at the North-West University, entailed the establishment of the platinum coating technology which entailed two steps; firstly using newly obtained equipment to manufacture the membrane electro catalyst assemblies (MEA’s) and gas diffusion electrodes (GDE’s) and secondly to test these MEA’s and GDE’s using sulphur dioxide depolarized electrolysis by comparing the manufactured MEA’s and GDE’s to commercially available MEA’s and GDE’s. Different MEA’s and GDE’s were manufactured using both a screen printing (for the microporous layer deposition) and a spraying technique. The catalyst loadings were varied as well as the type and thickness of the proton exchange membranes used. The proton exchange membranes that were included in this study were Nafion 117®, sPSU-PBIOO and SfS-PBIOO membranes whereas the gas diffusion layer consisted of carbon paper with varying thicknesses (EC-TP01-030 – 0.11 mm and EC-TP01-060 – 0.19mm). MEA and GDE were prepared by first preparing an ink that was used both for MEA and GDE spraying. The MEA’s were prepared by spraying various catalyst coatings onto the proton exchange membranes containing 0.3, 0.6 and 0.9 mg/cm2 platinum respectively. The GDE’s were first coated by a micro porous carbon layer using the screen printing technique in order to attain a suitable surface for catalyst deposition. Using the spraying technique GDE’s containing 0.3, 0.6, 0.9 mg/cm2 platinum were prepared. After SEM analysis, the MEA’s and GDE’s performance was measured using SO2 depolarized electrolysis. From the electrolysis experiments, the voltage vs. current density generated during operation, the hydrogen production, the sulphuric acid generation and the hydrogen production efficiency was obtained. From the results it became clear that while the catalyst loading had little effect on performance there were a number of factors that did have a significant influence. These included the type of proton exchange membrane, the membrane thickness and whether the catalyst coating was applied to the proton exchange membrane (MEA) or to the gas diffusion layer (GDE). During SO2 depolarized electrolysis VI curves were generated which gave an indication of the performance of the GDE’s and MEA’s. The best preforming GDE was GDE-3 (0.46V @ 320 mA/cm2), which included a GDE EC-TP01-060, while the best preforming MEA’s were NAF-4 (0.69V @ 320mA/cm2) consisting of a Nafion117 based MEA and PBI-1 (0.43V @ 320mA/cm2) made from a sPSU-PBIOO blended membrane. During hydrogen production it became clear that the GDE’s produced the most hydrogen (best was GDE-02 a in house manufactured GDE yielding 67.3 mL/min @ 0.8V), followed by the Nafion® MEA’s (best was NAF-4 a commercial MEA yielding 57.61 mL/min @ 0.74V) and the PBI based MEA’s. , (best was PBI-2 with 67.11 mL/min @ 0.88V). Due to the small amounts of acid produced and the SO2 crossover, a significant error margin was observed when measuring the amount of sulphuric acid produced. Nonetheless, a direct correlation could still be seen between the acid and the hydrogen production as had been expected from literature. The highest sulphuric acid concentrations produced using the tested GDE’s and MEA’s from this study were the in-house manufactured GDE-01 (3.572mol/L @ 0.8V), the commercial NAF-4 (4.456mol/L @ 0.64V) and the in-house manufactured PBI-2 (3.344mol/L @ 0.8V). The overall efficiency of the GDE’s were similar, ranging from less than 10% at low voltages (± 0.6V) increasing to approximately 60% at ± 0.8V. For the MEA’s larger variation was observed with NAF-4 reaching efficiencies of nearly 80% at 0.7V. In terms of consistency of performance it was shown that the Nafion MEA’s preformed most consistently followed by the GDE’s and lastly the PBI based MEA’s which for the PBI based membranes can probably be ascribed to the significant difference in thickness of the thin PBI vs. the Nafion based membranes. In summary the study has shown the results between the commercially obtained and the in-house manufactured GDE’s and MEA’s were comparable confirming the suitability of the coating techniques evaluated in this study. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2014

Page generated in 0.1088 seconds