• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 10
  • 8
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines

Shivapuji, Anand M January 2015 (has links) (PDF)
The current work, through experimental and numerical investigations, analyses the process and cycle level deviations in engine response on fuelling multi-cylinder natural gas engines with producer gas. Producer gas is a low calorific value bio-derived alternative with composition of 19 ± 1% CO and H2, 2 ± 0.5 % CH4, 12 ± 1% CO2 and 46 ± 1% N2 and has thermo-physical properties significantly different from natural gas. Experimental investigations primarily address the energy balance (full cycle analysis) and in-cylinder response (process specific analysis) at various operating conditions covering naturally aspirated and turbocharged mode of operation with natural gas and producer gas. Numerical investigations are based on two thermodynamic scope mathematical models, a zero dimensional model (Wiebe function) and a quasi-dimensional model (propagating flame front heat release). A detailed diagnostic analysis on a six cylinder (E6) indicates, turbocharger mismatch, the first explicit impact of fuel thermo-physical property variation. Turbocharger matching and optimization resulted in a peak load of 72.8 kWe (BMEP 9.47) at a maximum brake torque ignition angles of 22 deg before TDC and compressor pressure ratio of 2.25. Engine energy distribution analysis indicates skewed energy balance with higher cooling load (in excess of 30%) as compared to fossil fuel operation. This is attributed to the presence of nearly 20% H2 which enhances the convective cooling through the higher thermal conductivity. Parametric variation of H2 fraction on a two cylinder engine (E2) with four different syngas compositions (mixture H2 varying from 7.1% to 14.2%) depicts enhanced cooling load from 33.5% to 37.7%. Process level comparison indicates significant deviations in the heat release profile compared to fossil fuels. It has been observed that with an increase in mixture hydrogen fraction (from 7.1% to 14.2%), the fast burn phase combustion duration reduces from 59.6% to 42.6% but the terminal stage duration increases from 25.5% to 48.9%. The enhanced cooling of the mixture (due to the presence of hydrogen), particularly in the vicinity of walls is argued to contribute towards the sluggish terminal phase combustion. Immediate implication of thermo-kinematic response variation is on the magnitude and sensitivity of combustion descriptors and the need for dependent control system calibration for producer gas fuelled operation is established. Descriptor analysis is extended to knocking pressure traces and a new simple methodology is proposed towards identifying the occurrence and regime of knock. Analysing the implications through numerical investigation, the influence of the altered thermo-kinematic response for producer gas fuelled operation impacts 0D simulations. Zero dimensional simulations fail with conventional coefficients requiring fuel specific coefficients. Based on fuel specific coefficients, the suitability of 0D model for the simulation of varying operating conditions ranging from naturally aspirated to turbo charged engines, compression ratios and different engine geometries is established. The analysis is extended to quasi-dimensional through the eddy entrainment and laminar burn up model. The choice of laminar flame speed and turbulent parameters is validated based on the assessment of the flame speed ratio (4.5 ± 0.5 for naturally aspirated operation, turbulent Reynolds number of 2500 ± 250 and 9.0 ± 1.0 for turbocharged operation, turbulent Reynolds number of 5250 ± 250). In the estimation of laminar flame speed, the limitation of GRIMech 3.0 mechanism for H2-CO-CH4 systems is explicitly established and GRIMech 2.11 is used to arrive at experimentally comparable results. In-cylinder engine simulation results covering parametric variation of load, ignition angle and mixture quality, for engine natural gas fuelled naturally aspirated operation and producer gas fuelled naturally aspirated and turbocharged after cooled are compared with experimental results. The quasi dimensional analysis is extended to simulate end gas auto-ignition and is validated by using experimental manifold conditions for turbocharged operation for which knock has been observed. Extending the model to a Waukesha cooperative fuels research engine, motor methane number of 110 is reported for standard composition producer gas. The use of quasi dimensional models with end gas reaction kinetics enabled for knock rating of fuels represents first of its kind initiative.
22

Comparative Study of Different Organic Rankine Cycle Models: Simulations and Thermo-Economic Analysis for a Gas Engine Waste Heat Recovery Application

Rusev, Tihomir January 2015 (has links)
Increasing the efficiency of conventional power plants is a crucial aspect in the quest of reducing the energy consumption of the world and to having sustainable energy systems in the future. Thus, within the scope of this thesis the possible efficiency improvements for the Wärtsilä 18V50DF model gas engine based combine power generation options are investigated by recovering waste heat of the engine via Organic Rankine cycle (ORC).  In order to this, four different ORC models are simulated via Aspen Plus software and these models are optimized for different objective functions; power output and price per unit of electricity generation. These ORC models are: regenerative Organic Rankine cycle (RORC), cascaded Organic Rankine cycle with an economizer (CORCE), cascaded Organic Rankine cycle with two heat sources (CORC2) and cascaded Organic Rankine cycle with three heat sources (CORC3). In the cascaded cycle models there are two loops which are coupled with a common heat exchanger that works as a condenser for the high temperature (HT) loop and as a preheater for the low temperature (LT) loop. By using this common heat exchanger, the latent heat of condensation of the HT loop is utilized. The engine’s hot exhaust gases are used as main heat source in all the ORC models. The engine’s jacket water is utilized in the CORC2 models as an additional heat source to preheat the LT working fluid. In the CORC3 models engine’s lubrication oil together with the jacket water are used as additional sources for preheating the LT loop working fluid. Thus, the suitability of utilizing these two waste heat sources is examined. Moreover, thermodynamic and economic analyses are performed for each model and the results are compared to each other. The effect of different working fluids, condenser cooling water temperatures, superheating on cycles performance is also evaluated. The results show that with the same amount of fuel the power output of the engine would be increased 2200 kW in average and this increases the efficiency of the engine by 6.3 %. The highest power outputs are obtained in CORC3 models (around 2750 kW) whereas the lowest are in the RORC models (around 1800 kW). In contrast to the power output results, energetic efficiencies of the RORC models (around 30 %) are the highest and CORC3 models (around 22 %) are the lowest. In terms of exergetic efficiency, the highest efficiencies are obtained in CORC2 (around 64.5 %) models whereas the lowest in the RORC models (around 63 %). All the models are found economically feasible since thermodynamically optimized models pay the investment costs back in average of 2 years whereas the economically optimized ones in 1.7. The selection of the working fluid slightly affects the thermodynamic performance of the system since in all the ORC configurations Octamethyltrisiloxane (MDM) working fluid cycles achieve better thermodynamic performances than Decamethyltetrasiloxane (MD2M) working fluid cycles. However, the choice of working fluid doesn’t affect the costs of the system since both working fluid cycles have similar price per unit of electricity generation. The CORC2 models obtain the shortest payback times whereas the CORC3 models obtain the longest Thus the configuration of the ORC does affect the economic performance. It is observed from the results that increasing the condenser cooling water temperature have negative impact on both thermodynamic and economic performances. Also, thermodynamic performances of the cycles are getting reduced with the increasing degree of superheating thus superheating negatively affects the cycle’s performances. The engine’s jacket water and lubrication oil are found to be sufficient waste heat sources to use in the ORC models.

Page generated in 0.0608 seconds