• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effets de tensioactifs ioniques sur les interfaces et l’agglomération d’hydrates de gaz.. / Effects of ionic surfactants on the interfaces and the gas hydrates agglomeration.

Delroisse, Henry 15 December 2017 (has links)
Lors de la production d’hydrocarbures, les conditions de pression et température dans les conduites peuvent être favorables à la formation d’hydrates de gaz (composés cristallins formés par l’association de molécules d’eau et de gaz). Leur formation peut entraîner le bouchage des conduites et mener à l’arrêt de la production, entraînant d’importantes pertes économiques. Pour remédier au risque « hydrate », les pétroliers disposent de diverses méthodes dont l’utilisation d’additifs antiagglomérants. Les antiagglomérants sont des tensioactifs capables de s’adsorber à la surface des cristaux d’hydrate et de les maintenir dispersés dans la phase hydrocarbonée, qui est généralement majoritaire. L’objectif de cette thèse est de progresser dans la compréhension des mécanismes d’action de tensioactifs ioniques pour la prévention de l’agglomération d’hydrates de gaz. Plusieurs tensioactifs cationiques ont été étudiés sur un hydrate de cyclopentane (CP) (qui se forme à pression atmosphérique) et sur un hydrate de méthane/propane (qui se forme sous pression).Pour les deux hydrates, l’effet des tensioactifs sur la morphologie des cristaux et sur leur mouillabilité a été étudié, et leur performance antiagglomérante (AA) a été évaluée en réacteur agité pour différentes conditions et compositions des systèmes. Les tensioactifs conduisant à la formation de cristaux individuels présentent les meilleures performances AA. Les observations montrent qu’il n’est pas indispensable que les tensioactifs rendent les cristaux mouillables à l’huile pour qu’ils procurent une bonne protection contre l’agglomération dans un système agité où l’huile est la phase majoritaire. Nous avons vu que la modification (par ajout de sel par exemple) de l’environnement physicochimique des molécules tensioactives peut jouer un rôle déterminant sur leurs propriétés AA. De même, la modification de la structure des molécules (nature du contre-ion, longueur des chaînes hydrocarbonées) impacte leur adsorption sur l’hydrate, la morphologie et la mouillabilité des cristaux, et par suite leur performance AA. Les principaux facteurs identifiés pour la bonne performance d’une molécule tensioactive sont sa capacité à se fixer efficacement et en quantité suffisante à la surface de l’hydrate, et à rendre les cristaux d’hydrate hydrophobes, ou dans le cas où il les rend hydrophiles d’abaisser fortement la tension interfaciale entre les phases aqueuse et huileuse de manière à réduire l’intensité des forces capillaires entre les particules. Enfin, nous avons pu établir une corrélation entre les observations faites à l’échelle microscopique et la performance AA des tensioactifs évaluée à l’échelle macroscopique. Ce travail confirme que l’hydrate de CP est globalement un bon modèle pour des évaluations simples de la performance de molécules tensioactives. L’utilisation de l’hydrate de CP présente néanmoins des limitations pour mener des études à forts sous-refroidissements et avec de grandes fractions volumiques d’eau. / Pressure and temperature conditions encountered in the pipelines of hydrocarbons production may be favorable to the formation of gas hydrates (crystalline compounds formed by the association of molecules of gas and water). Their agglomeration in pipelines may form plugs and lead to production shutdowns and cause significant economic losses. To prevent it, oil and gas companies use various methods and more particularly anti-agglomerant additives. Anti-agglomerants are surfactants that can adsorb at the hydrate crystals surface and keep them dispersed in a hydrocarbon phase. The objective of this thesis is to progress in the understanding of mechanisms of action of ionic surfactant to prevent the gas hydrates agglomeration. Several cationic surfactants were studied on a cyclopentane (CP) hydrate (formed at atmospheric pressure) and on a methane/propane hydrate (formed under pressure). For both hydrates, the effect of surfactants on the crystals morphology and on their wettability was investigated, and their anti-agglomerant (AA) performance was evaluated in an agitated reactor for systems at different conditions and compositions. The surfactants leading to the formation of individual crystals had the best AA performances. In order to have a good protection against the agglomeration, it is not necessary that the surfactants make the crystals oil wettable in a system where the oil phase is in excess. We showed that the modification (by the addition of salt for example) of the physicochemical environment of surfactant molecules plays an important role on their AA properties. Similarly, the modification of the structure of molecules (counter-ion nature, length of the hydrocarbon chains) affects their adsorption on the hydrate, the morphology and wettability of crystals and consequently their AA performance. The main factors identified for a good performance of a surfactant molecule are its capacity to be efficiently fixed and in a sufficient amount on the hydrate surface in order to make the hydrate crystals hydrophobic. In the case where it makes the hydrate hydrophilic, the surfactant has to strongly reduce the interfacial tension between the aqueous and oil phases and then reduce the intensity of capillary forces between hydrate particles. Lastly, we set a correlation between the observations done at the microscopic scale and the AA performance of surfactants evaluated at the macroscopic scale. This work confirms that the CP-hydrate is overall a good model for a simple evaluation of the surfactant molecules performance. However, the use of the CP-hydrate has some limitations to conduct studies at high subcooling and watercut.

Page generated in 0.2451 seconds