Spelling suggestions: "subject:"sas lenses."" "subject:"suas lenses.""
1 |
Laser applications and refractive properties of non-homogeneous gas distributions.Lisi, Nicola. January 1995 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, 1995.
|
2 |
Photothermal refraction and focusing.Forbes, Andrew. January 1997 (has links)
This thesis begins with an introduction to the interaction and refraction of light
in continuous media. It is shown how these properties can be exploited to achieve
focusing of parallel light rays in such a medium. Past work on Gas Lenses is reviewed,
highlighting the progress in design of gas lenses, leading to a justification
for the research described in the rest of the chapter. Original work by the author
on the subject of continuous gas lenses at low and high pressure is then presented.
Experiments show that gas lenses at low pressure have stable foci, but long focal
lengths, while at high pressure two foci are produced, both of unstable character.
These results are explained by a simple theory, and future applications of such lensing
properties are presented.
Chapter two introduces the concept of the Colliding Shock Lens (CSL), and presents
shallow water wave simulations, conducted by the author, as a useful analogy to the
interaction of shocks in the CSL. All the properties of the CSL lensing action are
reproduced in the water simulations, yielding useful insight, by means of a simple
experiment, into the physics of interacting shock waves.
Chapter three presents original work by the author on the subject of multiple pulse
thermal lensing. A theory is developed which predicts the behaviour of thermal
lenses seen in an industrial laser chain. Experiments on thermallensing, as well as
some solutions, are presented and discussed.
Chapter four revises the theory of Zernike Polynomials and their application to the
study of aberrations. Thermal aberrations are studied, including the aberrations
introduced by thermal lensing and thermal blooming. The relationship between
aberrations and subsequent beam quality and beam propagation is explored.
Chapter five looks at the use of adaptive mirrors for mode matching. Although the
theory of adaptive systems is well known, no-one has as yet tackled the problem of
correcting for mode matching changes. A new way of thinking about mode matching
is proposed, and the merits of this system, called characterisation space, are
explained.
Chapter six comprises the theory and design of a novel vacuum chamber which has
applications in gas lens designs. All the gas lenses used in pressure experiments were
housed in compressional vacuum chambers. The idea of a Tensional Vacuum Vessel
(TVV) is introduced, and experiments show that such chambers are very successful
low vacuum chambers. The advantages and applications of TVVs are discussed,
specifically those relating to gas lens applications.
At the end of this thesis it was apparent that more questions had been generated
than answers. This is probably true of any study. Chapter seven therefore outlines
some as yet unanswered questions, and gives some suggestions for starting points.
Some of this work is presently being undertaken by the author. / Thesis (Ph.D.)-University of Natal, 1997.
|
3 |
Applications of light scattering and refraction by atmospheric gases.Moorgawa, Ashokabose. January 2002 (has links)
LIDAR, an acronym for LIght Detection And Ranging, is a system used for studying
the scattering of laser light incident on a parcel of air. This thesis investigates the
atmosphere above the Durban region using two atmospheric LIDARs, referred to, in
this study, as the "old LIDAR" and the "new LIDAR".
The old LIDAR was used in a campaign of observation from July to October 1997 in
a study of aerosol concentrations over Durban. This thesis will focus on, among other
things, the local aerosol profiles for low altitude (0 to 10 km) and high altitude (10 to
35 km). In particular, the focus will shift on any long persistence in this region (it was
found that the aerosol layer observed by M. Kuppen (1996) on June 1994 at 25 km
may have moved to the higher altitude of 28 km in October 1997. This may be
explained by stratospheric upwelling, carrying the layer to higher altitude. These
aerosols are known to influence the local climate). This investigation will give some
useful insight into the local atmospheric dynamics.
The new LIDAR system (Rayleigh-Mie LIDAR) has been used to measure
atmospheric temperatures from 20 to 60 km as well as aerosol extinction coefficients
from 15 to 40 km. Height profiles of temperature have been measured by assuming
that the LIDAR returns are solely due to Rayleigh scattering by molecular species and
that the atmosphere obeys the perfect gas law and is in hydrostatic equilibrium
(Hauchecorne and Chanin 1980).
Since its installation in April 1999, the new LIDAR has been used to monitor
stratospheric temperatures and aerosol concentrations from 10 to 40 km. In this study,
we discuss in chapter 7 the results of a validation campaign conducted during the
period of April 1999 to December 2000. Average monthly LIDAR temperatures are
computed from April 1999 to December 1999 and compared with radiosonde
temperatures obtained from the South African Weather Service (SAWS) at Durban.
The monthly LIDAR temperature profiles over two years (1999 and 2000) were also
computed and compared with the climatological model Cospar International
Reference Atmosphere (CIRA)-1986 and with the average monthly European Centre
for Medium Range Weather Forecast (ECMWF) temperatures . The results show that
there is good agreement between LIDAR and SAWS radiosonde temperatures in the
20 and 30 km altitude range. Between 20 and 40 km, the monthly LIDAR
temperatures agree closely with the CIRA-86 and ECMWF profiles. However, during
winter, in the altitude range 40 to 60 km, LIDAR temperatures are warmer than
CIRA-1986 and ECMWF temperatures, and they show large variability. These
variations could be due to relatively fast transient phenomena like gravity waves or
planetary waves propagating vertically in the stratosphere. As part of the validation
process, the aerosol extinction coefficients retrieved from the LIDAR data have also
been compared with the extinction coefficients measured by Stratospheric Aerosol
and Gas Experiment (SAGE) II close to the LIDAR location and on coincident days.
Appendix E of this thesis also investigates the concept of refraction by atmospheric
gases as applied to gas lenses. A simple spinning pipe gas lens (SPGL) has been used
as the objective lens of a camera to take pictures of the moon and sun spots. The
SPGL is a varifocal length lens which depends on the temperature of the pipe and the
angular velocity at which it spins. For our purpose a focal length of 8 m has been
used. The moon pictures are compared with a lunar map so as to identify the maria. / Thesis (Ph.D.)-University of Natal, Durban, 2002.
|
4 |
Refractive effects in phase objects and associated phenomena.Buccellato, Ricardo. January 1994 (has links)
The effect of the refraction of a laser beam propagating through three different
phase objects, i.e. a laser produced plasma and two different gas media,
is investigated in this thesis. It is shown that these effects have useful applications.
As an introduction to the work performed, a basic discussion of the
theory of light is given.
In the first experimental study, the accuracy of using the Refractive Fringe
Diagnostic, as a tool to determine the electron density profiles of laser produced
plasmas, is investigated [Buccellato et al. (1992)]. A comparative
study is performed between an established method of determining the electron
density profiles of laser produced plasmas, i.e. Nomarski interferometry,
and the Refractive Fringe Diagnostic, by comparing experimental data obtained
from the same laser shot. For the electron density profiles investigated,
it is shown that the Refractive Fringe Diagnostic over-estimates the electron
density by an order of magnitude. It is suggested that the electron density
errors are due to the inherent assumptions of the Refractive Fringe Diagnostic.
To verify this, a numerical simulation into the accuracy of the RFD is
performed on a mathematically modelled plasma. The discrepancy in the
numerical results are consistent with those of the experimental results and
these can be attributed to the assumptions made by the Refractive Fringe
Diagnostic.
Laser light refracted by a gas medium, with a specific density profile, may
produce a near diffraction limited focal spot. The remaining two experimental
investigations deal with two novel gas lenses: the Pulsed Gas Lens and
the Colliding Shock Lens.
A radially expanding cylinder of gas produces a suitable density structure
to focus laser light. A design of a gas lens, the Pulsed Gas Lens, using this
principle is proposed as a final focusing lens for a laser fusion power station
[Buccellato et al. (1993a)]. To establish the feasibility of such a lens a proof-of-
principle design for the lens is given. A numerical simulation of this lens is
performed by modelling the gas flow from the lens and raytracing through the
determined density profiles inside the lens. It is found that this lens can be
used as a focusing element. To establish certain practical aspects of the proof-of-
principle design, a beam deflection device was constructed and tested. This
beam deflection device models the lensing principle of the proposed lens.
The laser beam deflection observed did not match the computed deflection.
The opening mechanism for the proof-of-principle design did not produce an
instantaneous opening of the chamber as was assumed in the simulation. The
opening mechanism must be modified to decrease the opening time.
Diverging spherical shock waves, produced by pairs of opposing electrodes
evenly spaced on a circumference, produce a converging cylindrically symmetric
shock wave. After convergence a suitable density structure exists for
near diffraction li.mited focusing to occur. It is found that the Colliding
Shock Lens is a varifocal lens: the focal length and lens diameter increase
with time [Buccellato et al. (1993b)]. A numerical simulation is performed
to model the operation of the Colliding Shock Lens. The numerical results
compare favourably with the experimental results. From the simulation it is
established that the lens diameter can be scaled up by increasing the physical
size of the lens and the input energy to the lens. Potential applications of
the colliding shock lens are discussed.
To conclude this thesis, the results of the separate investigations are summarised. / Thesis (Ph.D.)-University of Natal, 1994.
|
Page generated in 0.0474 seconds