• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Radio Study Of Gas Loss Processes In Nearby Galaxies

Hota, Ananda 06 1900 (has links)
The work in this thesis involves detailed multi-frequency radio continuum (from 325 MHz to 15 GHz) and Hi spectroscopic studies of a few represent tative nearby galaxies which are experiencing gas-loss from their disks due to different physical processes. These processes are starburst-driven superwind, active galactic nucleus (AGN) −driven nuclear outflow, ram pressure stripping and tidal interactions. Gas-loss could affect the evolution of individual galaxies with age as well as their evolution with cosmic epoch. We have made use of both the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA) for our study. Stars and gases are the two major constituents of a galaxy. The properties of the gaseous medium in them change with galaxy-types, such as the presence of large amount of gas in the late type disk galaxies and little interstellar medium (ISM) in the ellipticals or early−type galaxies. Galaxies in groups and clusters interact with each other and with the low density gaseous medium surrounding them, resulting in a possible evolution of their structures and physical properties. Basic differences in their observed properties depend on their history of interactions with the environment and also on the history of their central activities. Tidal interaction among galaxies may result in the flow of gas into the central region of the galaxy. This can trigger a central starburst and/or feed a central super-massive black hole to trigger an AGN activity. These activities produce either starburst-driven superwind or AGN-driven nuclear outflows (accretion disk wind or bipolar radio jet/bubbles) and the galaxy may lose their metal-enriched central gas concentration to the intra-cluster (ICM) or intergalactic medium (IGM). There are suggestions that when large amount of gas is cleared out from the central region of an ultra-luminous infrared galaxy (ULIRG), the dust enshrouded hidden AGN may unveil itself as a bona fide quasi-stellar object (QSO). Galaxies also lose gas usually from the outer parts when they move through the intra-cluster medium (ICM) or intragroup medium (IGrM) due to ram pressure stripping. When the ram pressure is stronger than the pressure by which the gas is bound to the galaxy, most of the gas may be lost or displaced from the disk thus affecting the star formation and metal formation in the disk of the galaxy. Starburst galaxies and superwinds: The starformation rate or the supernovae rate in some gas rich galaxies are 10−1000 times higher than that of the normal galaxies. This process can consume large amount (1−30×109 M) of gas over a short time scale (107−8yr) in a small region (typically 1 kpc). During such bursts of starformation, the cumulative effect of many supernovae and stellar winds from the massive stars in the central region of a disk galaxy imparts huge amount of mechanical energy to the ISM of the galaxy which then creates a high pressure (4 orders of magnitude higher then the average ISM pressure in the Milky way), high temperature (106−7 K) bubble of gas. This high pressure and high temperature bubble of gas expands and flows outwards in the direction of the steepest pressure gradient. This outflowing hot gas carries cooler gas and dust from the ISM along with it. It carries out heavy metals cooked in the central region of a galaxy to the external environment including the ICM or IGM. The typical outflow rate is 10−100Myr−1 with typical outflow velocity of few 100−1500 km s−1and it persists over few to 10 million yr. The observed sizes of such outflows are 1−20 kpc. We have studied a remarkable starburst-superwind system, NGC1482. This early type galaxy has been discovered to have a bi-conical shaped soft X-ray outflow as well as Hα and [Nii] outflow. The low-frequency radiocontinuum flux density was used to estimate the supernova rate, which could be used to constrain the dynamics of the driving force. The high-frequency high-resolution VLA observations revealed the central starforming region which is at the base of the bi-conical structure and presumably driving this outflow. The Hi observations also have resulted in finding two blobs of Hi on opposite sides of the galaxy defining an axis perpendicular to the outflow axis and rotating about it. We have also detected a multi-component broad (∼ 250 km s−1) Hi-absorption spectrum against the central continuum source. The absorption spectrum is nearly 70 km s−1 asymmetric towards the blue side with a component blue-shifted by 120 km s−1. The observed absorption could be due to the Hi-clouds driven outward by the central superwind outflow. Active galaxies and nuclear outflows: The inflow of gas to the central region of a galaxy triggers the starformation as well as the AGN activity. Co-existence of both these phenomena in some cases are well known. The accretion disk of the AGN can produce a hot wind emitting in X-rays in addition to the radio continuum jet perpendicular to the accretion disk. It is known that the AGN jets, in particular Seyfert jets have no correlation with the rotation axis of the host disk-galaxy. In such a scenario a very complex geometry can arise. Radio jets may interact with the starburst-driven winds or winds from the accretion disk or with the clouds of ISM of the galaxy accelerating and ionizing the gas. Sometimes the mass outflow rate may be ten times the mass accretion rate necessary to fuel the AGN, suggesting heavy mass loading of these AGN outflows. Depending on the energy of the outflow processes gas may be ejected out of the gravitational field of the galaxy. We have studied a composite galaxy, NGC6764 with an AGN and a very young starburst with two episodes of starformation, one 3−5 and another 15−50 Myr ago. The high-resolution high-frequency radio-continuum obser- vations reveal a radio core and roughly bi-conical radio emission oriented along the major axis of the galaxy with a feature which could be a jet. The lower-resolution images show bi-polar radio bubbles oriented along the minor-axis of the galaxy. These edge-brightened radio bubbles are asymmetric in size, extent (north-south) and luminosity. There is an east-west asymmetry in the spectral index of the bubbles. In a representative sample of dozen such radio bubbles in nearby galaxies we find that invariably all of these have an AGN. Similar to few other galaxies in the sample we also found that the radio continuum bubbles in NGC6764 are well correlated with the Hα filaments extending along the minor-axis of the galaxy. The CO(J=2-1) and CO(J=1-0) flux density ratio is also higher at the tip of the bubbles. Molecular gas plumes are seen extending along minor axis and have components blue-shifted by 140 km s−1. Our high-resolution Hi observations also show an absorption component at the systemic velocity with a weak component blue shifted by 120 km s−1. We have discussed the possibility of the radio plasma ejected from the AGN being carried outwards along the minor-axis by the superwind created by the young circumnuclear starburst. That bubble of hot gas from the superwind mixed with the relativistic plasma from the AGN is interacting with the cooler Hi and molecular gas of the ISM and driving it outwards. This interaction which is possibly in an early phase of expansion is also giving rise to the outflowing Hα filaments in this interesting composite galaxy. Cluster galaxies and stripping processes: When a galaxy moves through the hot and dense ICM with velocities 1000 km s−1, the ram pressure exerted by the ICM can strip the loosely bound and more tenuous gas of the galaxy. As a result of this the dense molecular gas or the stars in the galaxy remain almost unaffected but the tenuous gas moving out of the galaxy’s gravitational field could reach the ICM. The fate of such stripped gas is not well constrained. Recently very long tails with sizes of 50−125 kpc have been discovered. Some of these are magnetised, some ionised, some neutral and some are million degree hot. These tails may cool and eventually form galaxies or may evaporate and mix with the ICM. They enrich the ICM with metals and magnetic fields. In some cases galaxies are known to have become as high as 90 % deficient in Hi in comparison to the corresponding field galaxy of same type, size and luminosity. In the cluster/group environment tidal interactions with other group/cluster members or the cluster potential well could also take place affecting the observed properties of the galaxy. In addition, tidal interactions could also facilitate the removal of gas by ram pressure due to the ICM or IGrM. NGC4438 which we have studied in detail is an archetypal example of a galaxy which has been severely affected by the cluster environment. This late-type galaxy in the central region of the Virgo cluster is known to have interacted with the northern companion NGC4435. We have unambiguously resolved the radio nucleus from the lobes of radio continuum emission, and have shown it to have an inverted spectrum confirming it to be the nucleus. The lobes are almost perpendicular to the central molecular or stellar disk which is seen nearly edge-on. Projected onto the plane of the sky the lobeaxis is roughly parallel to the direction of the ram pressure wind. The lobes are very asymmetric in its extent, size and luminosity. The lobes are shelllike in structure and are interacting strongly with the asymmetric ISM. In the region of interaction both Hα and soft X-ray emission shells are seen. We explore possible reasons for the asymmetry in the lobes which is unlikely to be only due to the asymmetry in the density of the ISM on opposite sides of the galaxy. On a larger scale we have imaged the diffuse lower-frequency radio-continuum emission 5 kpc away from the central region seen on the western side of the disk of the galaxy. This extended emission has flatter spectral index at higher frequencies which suggests it to be a mixture of thermal and non-thermal components. In this region Hα, soft X-ray, Hi, molecular gas and relativistic plasma (i.e. all phases of the ISM) have been detected. We have found a linear structure on the western side near the same region with mass of nearly 200 million M We have imaged the Hi−emission from the stellar disk for the first time. The Hi -velocity field shows that the extra-planar gas could be rotating slower then the disk as seen in cases of ram pressure stripping. At lower resolution we detect more Hi from the halo of the galaxy. The iso-velocity contours appear to curve towards the axis of rotation or direction of the ram pressure wind, as you go away from the mid plane. We discuss whether this might be due due to the interaction of NGC4438 with NGC4435. We have discovered a 50 kpc long faint tail of Hi having a mass of 140 million solar mass to the north-west of the NGC4438−NGC4435 system. This Hi−tail partially coincides with an extremely faint (µv> 28) stellar tail, which has been seen in the deep optical imaging of intra-cluster light. Such tails have not been predicted by the simulations of interaction between NGC4435 and NGC4438. Hence it seems to be a remnant of some past event in the evolution of this interesting system. To further study the effects of ram pressure stripping and tidal interaction in galaxies in a group, we have studied the group Ho 124. We found that the radio continuum bridge of tidal interaction between NGC2820 and NGC2814 has a very steep (α=−1.8) spectrum possibly due to the older relativistic plasma left in it. The Hi of NGC2820 has sharp truncation on the southeastern side parallel to the edge on disk, while it has a unipolar huge loop on the north-west. NGC2814 has both an Hi and radio continuum tail different from the connecting bridge with sharp truncation again on the side opposite to the tail. Although there is reasonable radio continuum emission from the disk of NGC2820, there is no detectable emission corresponding to the huge one sided Hi loop. The velocity field of the Hi-loop trails that of the underlying stellar disk. Also in the galaxy NGC2805, a member of the same group, we find the Hi to have accumulated on the northern side while there is a bow-shock shaped starformation arc on the southern side of the disk. All these features namely starformation arc, sharp cut off in the Hi-disk, Hi-loop and Hiand radio continuum tails are signatures of ram pressure stripping. Ram pressure stripping in groups is relatively rare but this could get assistance from tidal interactions which help loosen the gravitational bound of the stellar disk on the tenuous ISM. A more spectacular case of ram pressure stripping is seen in the cluster Abell 1367. We have studied a region of the cluster A1367 where three of its galaxies namely CGCG 09773, CGCG 09779 and CGCG 09787 exhibit amazingly long (50−75 kpc) tails of radio continuum and optical emission lines (Hα) pointing roughly away from the cluster centre. They also show arcs of starformation on the side facing the ram pressure of the cluster medium. In our Histudy we found that all three of them have higher mass of Hi on the down-stream side. Two of the galaxies (CGCG 09773 and CGCG 09779) exhibit sharper gradients in Hiintensity on the side of the tail or on the down-stream side. However the Hi emission in all the three galaxies extends to much smaller distances than the radio-continuum and Hαtails, and are possibly still bound to the gravitational pull of the respective galaxies. These results are in good agreement with the hydrodynamical simulations of ram pressure stripping in cluster medium. In this study we have found a number of interesting results on a few nearby galaxies where different gas-loss processes have modified the morphology and kinematics of the ISM and/or the stellar distribution of the respective parent galaxies. We have found evidence of blue-shifted Hi absorption lines driven outwards by the starburst-driven superwinds and/or AGN-driven nuclear outlows. The synchrotron plasma outflowing from an AGN in a composite galaxy has been suggested to be interacting with the superwind which also drives other components of the ISM outwards. In groups or clusters of galaxies we have discovered an Hiloop, Hitails, regions of compressed Hi, trailing velocity fields, slow-rotating extra-planar gas, displaced ISM and asymmetries in various radio continuum or Hifeatures as evidences of ram pressure stripping mechanism affecting the member galaxies. The results obtained from this study illustrates the manifestations of gas loss proceeses in galaxies existing in different environments, and should provide valuable insights for future investigations with larger statistical samples towards a more complete understanding of gas loss processes in galaxies and their implications on galaxy evolution
2

Evolution des conditions d’écoulement du magma et du dégazage dans les conduits éruptifs des volcans andésitiques : apports de la modélisation numérique / Evolution of magma flow and degassing conditions in the upper conduit at andesitic volcanoes : insights from numerical modelling

Chevalier, Laure 09 May 2017 (has links)
L'activité des volcans andésitiques, tels que le Mont St Helens (États-Unis), Montserrat (Antilles) ou encore le Merapi (Indonésie), alterne entre des périodes relativement calmes, avec coulées de lave et formation d'un dôme, et des événements explosifs parfois très violents. Prévoir les transitions entre ces deux régimes est essentiel pour assurer la sécurité des populations voisines, mais demeure actuellement un vrai défi. Or les données expérimentales et les observations de terrain montrent que l'explosivité du magma est étroitement liée à son contenu en gaz. L'objectif de cette thèse est d'améliorer notre compréhension de l'évolution de ce contenu en gaz et de son influence sur l'activité volcanique, en nous appuyant sur des simulations numériques, l'analyse de données expérimentales ainsi que sur l'interprétation de données de déformation enregistrées au Merapi.Une part importante de ce travail réside dans le développement et l'amélioration de modèles d'écoulement en 2D pour prendre en compte le dégazage dans la partie supérieure du conduit, en régime transitoire. Nous présentons un modèle d'écoulement du gaz en temps qui tient compte des pertes en gaz aux bords du conduit et à sa sortie, selon les conditions présentes dans la roche encaissante et le dôme. Nous proposons également une adaptation des modèles de conduit permettant de coupler complètement l'écoulement du gaz avec celui du magma pour étudier l'évolution des conditions dans le conduit en régime transitoire. À partir de simulations de l'évolution du dégazage lors de l'emplacement d'un dôme, nous identifions les para-mètres contrôlant les pertes en gaz. Nos résultats montrent que ces pertes sont extrêmement sensibles à l'évolution de la perméabilité du magma et des gradients de pression autour du conduit en réponse au poids du dôme. La perméabilité du dôme a quant à elle peu d'influence. Au cours de la croissance du dôme, les pertes en gaz diminuent en profondeur. En haut du conduit, la pression du gaz augmente de quelques dizaines de MPa. Ces effets sont associés à une augmentation de l'explosivité du magma et de l'aléa volcanique en cas d'effondrement du dôme.Bien que la perméabilité du magma exerce un fort contrôle sur la perte de gaz, comme l'ont montré nos résultats, son évolution dans le conduit est peu contrainte. Les lois de perméabilité utilisées actuellement ne sont pas en accord avec l'ensemble des mesures réalisées sur des échantillons de magmas riches en silice. Dans le but d'améliorer notre compréhension du développement de la perméabilité dans le conduit, nous avons cherché à éclaircir le lien entre perméabilité, conditions d'écoulements, et caractéristiques géométriques du réseau de bulles connectées. Nous proposons une formulation du seuil de percolation, moment exact où le magma devient perméable compatible avec un grand nombre d'échantillons naturels et expérimentaux. Nous présentons aussi une nouvelle loi de perméabilité en accord avec la plupart des observations existantes, que nous avons intégrée à notre modèle 2D de dégazage. Nos résultats montrent qu'en fonction du nombre de bulles dans le magma et de la distribution de leurs tailles, l'importance des pertes en gaz et par conséquent les conditions d'écoulement dans le conduit varient d'effusives à explosives.Enfin, afin d'évaluer l'utilité des données de déformation pour suivre l'évolution des conditions d'écoulement, nous utilisons des modèles d'écoulement simples couplés à de la déformation élastique en 3D pour retrouver la déformation observée au sommet du Merapi peu avant l'éruption de 2006. Bien que ces modèles permettent de mieux comprendre les déplacements observés, le peu de données, associé à la complexité géologique et rhéologique du sommet, ainsi qu'à celle des processus physiques intervenant dans le conduit font qu'il est difficile de contraindre les conditions d'écoulement grâce à la déformation dans ce cas précis. / At silicic volcanoes, such as Mount St Helens (United States), Montserrat (British West Indies), or Merapi (Indonesia), periods of relative quiescence, with lava flows and dome emplacement, alternate with explosive, sometimes very violent events. Forecasting the effusive/explosive transitions, which is essential for the safety of nearby populations, remains currently a real challenge. However, experimental as well as field observations provide evidence that magma gas content is a major clue for understanding explosivity. This thesis, based on numerical simulations, experimental samples analysis, as well as on the interpretation of ground deformation data recorded at Merapi volcano, aims at improving our understanding of gas loss evolution, and its impact on the eruptive regime.A major part of this work consisted in developing and improving 2D axisymmetric conduit flow models for integrating gas loss in transient conditions. We provide a time-dependent model for gas flow in the upper conduit, that accounts for gas loss both at the conduit walls and at its top, depending on conditions in the surrounding rock and dome. We also propose an adaptation of conduit flow models allowing for full coupling between magma and gas flow in 2D that should be used to further investigate flow conditions evolution during transient regimes. From time-dependent gas flow simulations in the case of an effusive dome emplacement, we identify controlling parameters for gas loss. Our results provide evidence that gas loss is extremely sensitive to the evolution of magma permeability and of pressure gradients around the conduit due to dome loading, whereas, contrary to the common idea, dome permeability has almost no influence. Along with dome growth, gas loss decreases at depth, thus causing an increase in the magma gas content. At the top of the conduit, this results in an increase in gas pressure by a few tens of MPa, thus increasing the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.Although magma permeability plays a major role for gas extraction, as revealed by our results, its evolution within the conduit is poorly constrained. Currently used permeability laws fail in reassembling the whole dataset of permeability measurements from natural and experimental silicic samples. In order to improve our understanding of permeability development in the conduit, we worked on linking permeability and flow conditions with geometrical parameters that characterise the connected bubble network, based on experimental samples analysis. We propose an expression for the percolation threshold, i.e. the very moment when magma becomes permeable, that succeeds in classifying a wide dataset of natural and experimental samples. We also develop a new permeability law that reassembles most of the existing observations, and implement it within our gas flow 2D model. Results show that depending on the number of bubbles within the magma and on their size distribution, gas loss and then magma flow conditions evolve from effusive to explosive conditions.Eventually, we evaluate the applicability of monitoring flow conditions from observed ground deformation by using simplified conduit flow models, coupled with elastic deformation in 3D, to interpret ground deformation recorded in the near field at Merapi a few days before the 2006 eruption. Although conduit flow models provide important clues for interpreting observed displacements, the sparsity of field observations together with the complexity of the volcano summit geology, rheology and processes happening in the conduit make it very complex to constrain flow conditions from observed deformation.

Page generated in 0.0776 seconds