• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Study On The Effects Of Operational Parameters Of A Downdraft Gasifier

Wei, Lin 10 December 2005 (has links)
To examine the effects of operational parameters on syn-gas quality and biouel conversion rate under various running conditions, an experimental study of hardwood chip?s gasification in a downdraft gasifier was conducted. The resulting syn-gas had average low heating value of 5.79 ± 0.52 MJ/ Nm3, tar concentration of 14.06 ± 8.54 mg/Nm³, particulate concentration of 3.05 ± 1.79 mg/Nm³, hardwood conversion rate of 2.37±0.24 Nm³/kg, and carbon conversion rate of 98.01 ± 0.53%. This syn-gas is of acceptable quality to be used as a fuel source for internal combustion engine operations. The gasifier?s grate temperature had no evident effects on syn-gas quality and conversion rate within a range of 740 to 817oC. The particulate contents in preiltered syn-gas significantly increased when the gas flow rate changed from 36 to 56 Nm3/h. When the moisture content of hardwood chips increased, tar content of postiltered syn-gas significantly increased, and CO content significantly decreased.
2

Coal seam gas associations in the Huntly, Ohai and Greymouth regions, New Zealand

Butland, Caroline January 2006 (has links)
Coal seam gas has been recognised as a new, potential energy resource in New Zealand. Exploration and assessment programmes carried out by various companies have evaluated the resource and indicated that this unconventional gas may form a part of New Zealand's future energy supply. This study has delineated some of the controls between coal properties and gas content in coal seams in selected New Zealand locations. Four coal cores, one from Huntly (Eocene), two from Ohai (Cretaceous) and one from Greymouth (Cretaceous), have been sampled and analysed in terms of gas content and coal properties. Methods used include proximate, sulphur and calorifc value analyses; ash constituent determination; rank assessment; macroscopic analysis; mineralogical analysis; maceral analysis; and gas analyses (desorption, adsorption, gas quality and gas isotopes). Coal cores varied in rank from sub-bituminous B-A (Huntly); sub-bituminous C-A (Ohai); and high volatile bituminous A (Greymouth). All locations contained high vitrinite content (~85 %) with overall relatively low mineral matter observed in most samples. Mineral matter consisted of both detrital grains (quartz in matrix material) and infilling pores and fractures (clays in fusinite pores; carbonates in fractures). Average gas contents were 1.6 m3/t in the Huntly core, 4.7 m3/t in the Ohai cores, and 2.35 m3/t in the Greymouth core. The Ohai core contained more gas and was more saturated than the other cores. Carbon isotopes indicated that the Ohai gas composition was more mature, containing heavier 13C isotopes than either the Huntly or Greymouth gas samples. This indicates the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived from a biogenic (by CO2 reduction) source. The ash yield proved to be the dominant control on gas volume in all locations when the ash yield was above 10 %. Below 10 % the amount of gas variation is unrelated to ash yield. Although organic content had some influence on gas volume, associations were basin and /or rank dependant. In the Huntly core total gas content and structured vitrinite increased together. Although this relationship did not appear in the other cores, in the Ohai SC3 core lost gas and fusinite are associated with each other, while desmocollinite (unstructured vitrinite) correlated positively with residual gas in the Greymouth core. Although it is generally accepted that higher rank coals will have higher adsorption capacities, this was not seen in this data set. Although the lowest rank coal (Huntly) contains the lowest adsorption capacity, the highest adsorption capacity was not seen in the highest rank coal (Greymouth), but in the Ohai coal instead. The Ohai core acted like a higher rank coal with respect to the Greymouth coal, in terms of adsorption capacity, isotopic signatures and gas volume. Two hypothesis can be used to explain these results: (1) That a thermogenically derived gas migrated from down-dip of the SC3 and SC1 drill holes and saturated the section. (2) Rank measurements (e.g. proximate analyses) have a fairly wide variance in both the Greymouth and Ohai coal cores, thus it maybe feasible that the Ohai cores may be higher rank coal than the Greymouth coal core. Although the second hypothesis may explain the adsorption capacity, isotopic signatures and the gas volume, when the data is plotted on a Suggate rank curve, the Ohai coal core is clearly lower rank than the Greymouth core. Thus, pending additional data, the first hypothesis is favoured.
3

Coal seam gas associations in the Huntly, Ohai and Greymouth regions, New Zealand

Butland, Caroline January 2006 (has links)
Coal seam gas has been recognised as a new, potential energy resource in New Zealand. Exploration and assessment programmes carried out by various companies have evaluated the resource and indicated that this unconventional gas may form a part of New Zealand's future energy supply. This study has delineated some of the controls between coal properties and gas content in coal seams in selected New Zealand locations. Four coal cores, one from Huntly (Eocene), two from Ohai (Cretaceous) and one from Greymouth (Cretaceous), have been sampled and analysed in terms of gas content and coal properties. Methods used include proximate, sulphur and calorifc value analyses; ash constituent determination; rank assessment; macroscopic analysis; mineralogical analysis; maceral analysis; and gas analyses (desorption, adsorption, gas quality and gas isotopes). Coal cores varied in rank from sub-bituminous B-A (Huntly); sub-bituminous C-A (Ohai); and high volatile bituminous A (Greymouth). All locations contained high vitrinite content (~85 %) with overall relatively low mineral matter observed in most samples. Mineral matter consisted of both detrital grains (quartz in matrix material) and infilling pores and fractures (clays in fusinite pores; carbonates in fractures). Average gas contents were 1.6 m3/t in the Huntly core, 4.7 m3/t in the Ohai cores, and 2.35 m3/t in the Greymouth core. The Ohai core contained more gas and was more saturated than the other cores. Carbon isotopes indicated that the Ohai gas composition was more mature, containing heavier 13C isotopes than either the Huntly or Greymouth gas samples. This indicates the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived from a biogenic (by CO2 reduction) source. The ash yield proved to be the dominant control on gas volume in all locations when the ash yield was above 10 %. Below 10 % the amount of gas variation is unrelated to ash yield. Although organic content had some influence on gas volume, associations were basin and /or rank dependant. In the Huntly core total gas content and structured vitrinite increased together. Although this relationship did not appear in the other cores, in the Ohai SC3 core lost gas and fusinite are associated with each other, while desmocollinite (unstructured vitrinite) correlated positively with residual gas in the Greymouth core. Although it is generally accepted that higher rank coals will have higher adsorption capacities, this was not seen in this data set. Although the lowest rank coal (Huntly) contains the lowest adsorption capacity, the highest adsorption capacity was not seen in the highest rank coal (Greymouth), but in the Ohai coal instead. The Ohai core acted like a higher rank coal with respect to the Greymouth coal, in terms of adsorption capacity, isotopic signatures and gas volume. Two hypothesis can be used to explain these results: (1) That a thermogenically derived gas migrated from down-dip of the SC3 and SC1 drill holes and saturated the section. (2) Rank measurements (e.g. proximate analyses) have a fairly wide variance in both the Greymouth and Ohai coal cores, thus it maybe feasible that the Ohai cores may be higher rank coal than the Greymouth coal core. Although the second hypothesis may explain the adsorption capacity, isotopic signatures and the gas volume, when the data is plotted on a Suggate rank curve, the Ohai coal core is clearly lower rank than the Greymouth core. Thus, pending additional data, the first hypothesis is favoured.

Page generated in 0.0516 seconds