Spelling suggestions: "subject:"basedphase c.reaction kinetics"" "subject:"basedphase c.reaction cinetics""
1 |
Gas Phase Reaction Kinetics Of Boron Fiber ProductionFirat, Fatih 01 August 2004 (has links) (PDF)
In the production of boron fibers using CVD technique, boron deposition and dichloroborane formation reactions take place in a reactor. Boron deposition reaction occurs at the surface while formation of dichloroborane is the result of both gas phase and surface reactions.
A CSTR type of reactor was designed and constructed from stainless steel to investigate the gas phase reaction kinetics and kinetic parameters of boron fibers produced from the reaction of boron trichloride and hydrogen gases in a CVD reactor. The gases were heated by passing through the two pipes which were located into the ceramic furnace and they were mixed in the CSTR. The effluent gas mixture of the reactor was quenched by passing through a heat exchanger. An FT-IR spectrophotometer was connected to the heat exchanger outlet stream to perform on-line chemical analysis of the effluent gas mixture. Experiments were carried out at atmospheric pressure and a reactor temperature range of 300-600 º / C with different inlet reactant concentrations. The analysis of the FT-IR spectra indicated that the gas phase reaction and the surface reaction started at reactor temperatures above 170 º / C and 500º / C, respectively. It was concluded that reaction rate of the product increased with an increase in the inlet concentration of both reactants (BCl3 and H2) and with an increase in the reactor temperature. The gas phase reaction rate was expressed in terms of a th and b th orders with respect to the inlet concentrations of BCl3 and H2. The activation energy of the gas phase reaction, a and b were found to be 30.156 , 0.54 and 0.64, respectively. The correlation coefficient was 0.9969.
|
2 |
MASS SPECTROMETRIC METHODS DEVELOPMENT FOR IDENTIFICATION OF DRUG/HERBICIDE SUBSTANCES AND MUTAGENIC IMPURITIES, AND GAS-PHASE REACTIVITY STUDY OF PHENYLCARBYNE ANIONSErlu Feng (12035771) 18 April 2022 (has links)
<p>Mass
spectrometry (MS) is a versatile analytical tool that is especially useful for
identification of unknown compounds in mixtures when coupled with
chromatography. In MS experiments, the
analytes are ionized, separated based on their mass-to-charge (<i>m/z</i>)
ratios, and detected. The molecular weight of the analyte can often be derived
from the mass spectrum if stable molecular ions (M<sup>•+</sup>) or stable
protonated/deprotonated analyte molecules ([M+H]<sup>+</sup> or [M-H]<sup>–</sup>)
are generated. Further, MS can also be used to obtain structural information
for the ionized analytes via their fragmentation reactions. Tandem mass
spectrometry (MS<sup>n</sup>) experiments are powerful for the characterization
of unknown compounds in mixtures without the need for coupling them with
chromatography. In MS<sup>n</sup> experiments, the analytes are ionized, the
ions of interest are isolated and subjected to reactions, such as
collision-activated dissociation (CAD) or ion-molecule reactions with neutral
reagent molecules. The fragmentation pattern or the diagnostic ion-molecule
reaction product ions can be utilized to elucidate the structures of the
analytes. The fragment ions or diagnostic product ions can further be subjected
to CAD to obtain more structural information. Besides analytical purposes, MS<sup>n</sup> also provides a powerful tool for exploring
the reactivities of reaction intermediates that are elusive, such as
phenylcarbyne anions and phenylcarbene anions.</p>
<p>The
research described in this dissertation mainly focuses on the development of MS<sup>n</sup>
methods based on diagnostic gas-phase ion-molecule reactions followed by CAD
for (1) the characterization of differently substituted ureas and (2) the
differentiation of sulfonate esters from their isomeric analogs, such as
sulfite esters and sulfones. HPLC was coupled with the MS<sup>n</sup> methods
discussed above to demonstrate its usefulness in the identification of
compounds in mixtures. Additionally, a gas-phase reactivity study on
phenylcarbyne anions is discussed in this dissertation. The phenylcarbyne
anions were generated by CAD of two nitrogen molecules from negatively charged
phenyl tetrazole precursors. Their reactivities towards various reagents were
explored and rationalized with the help of quantum chemical calculations.</p>
|
Page generated in 0.1061 seconds