• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Studies on the Mechanisms and Kinetics of Nickel Oxide Reduction

Taufiq Hidayat Unknown Date (has links)
Fundamental studies on the mechanisms and kinetics of reduction of dense synthetic nickel oxide have been carried out in H2-N2 and H2-H2O mixtures. The influences of temperature, hydrogen partial pressure, and hydrogen-steam ratio on the reduction process were systematically investigated. The kinetics of the reduction process were followed metallographically by measuring the advance of the nickel product layer. The microstructures of the reduction products and their changes during heating were characterized using a high resolution scanning electron microscopy. In H2-N2 mixtures and H2-H2O mixtures with low steam content, it was found that the initial reduction rates were first order with respect to hydrogen partial pressure. In both sets of mixtures, it was found that the progress of NiO reduction was not a monotonic function of temperature. A minimum rate of advancement of NiO reduction was observed in the temperature range 700oC – 800oC depending on the hydrogen partial pressures and reduction time. A number of distinctly different nickel product microstructures, originating at the Ni-NiO interface were observed under various reduction conditions, namely coarse fibrous nickel with fissures, fine porous nickel-planar interface, large porous nickel-irregular interface and dense nickel product layer. The microstructures of reduction product were found to change with temperature and time. It was found that heating the coarse fibrous nickel structure resulted in a re-crystallization, grain growth and densification of nickel product. When the heat treatments were carried out on the porous nickel structures, the number of pores decreases with increasing temperature and time, which was accompanied by the increase in the pore sizes. The microstructures and kinetics of the reduction of nickel oxide were found to be a function of temperature, gas composition and reaction time. The study provides strong evidence for a link between the reduction kinetics and the changes in the reduction product microstructures. Mechanisms and kinetics of the reduction of nickel oxide have been discussed by considering reduction conditions, information on the structures and elementary processes involving in the reduction process.
2

[en] SYNTHESIS OF GALLIUM NITRIDE POWDER FROM GAS-SOLID REACTION USING CARBON AS REDUCING AGENT / [pt] SÍNTESE DE PÓS DE NITRETO DE GÁLIO POR REAÇÃO GÁS-SÓLIDO UTILIZANDO CARBONO COMO AGENTE REDUTOR

13 October 2003 (has links)
[pt] O nitreto de gálio (GaN) é um dos mais interessantes e promissores materiais para aplicação em dispositivos óptico- eletrônicos. GaN pode ser usado para a fabricação de diodos e lasers azuis. O desenvolvimento deste tipo de material está relacionado com três campos principais: 1) deposição de camadas de GaN cristalino; 2) produção de nano- filamentos a partir de reações confinadas no interior de nanotubos de carbono; 3) síntese de GaN em pó por diferentes métodos químicos. Recentemente, novas técnicas de deposição adotaram a sublimação de pós de GaN como fonte de gálio para a produção de nanofilamentos de GaN, filmes finos ou cristais. Estes métodos de sublimação mostram a necessidade do emprego de pós de GaN. No presente trabalho, é apresentada uma nova rota para a produção de pós de GaN a partir da reação gás-sólido entre Ga2O3 e NH3(g) utilizando o carbono como agente redutor no interior de um novo tipo de reator, disposto verticalmente. A partir desta rota obteve-se pós de GaN com conversões aproximadamente de 100% e com estrutura cristalina hexagonal. A quantidade de GaN obtida variou de acordo com os parâmetros experimentais adotados. Através de uma análise estatística foi possível determinar a influência da temperatura, razão molar de carbono/Ga2O3 e do tempo experimental sobre a taxa de produção de GaN. / [en] It is well known that gallium nitride (GaN) is one of the most interesting and promising materials for optoelectronic devices. GaN can be used for manufacturing blue light- emitting diodes and lasers. Development of this material is concerned with three main areas 1) deposition of GaN crystalline layers onto different substrates; 2) manufacturing of GaN nanorods from chemical reactions in the confined spaces provided by carbon nanotubes; 3) synthesis of GaN powders by different chemical methods. Recently, new deposition techniques have adopted sublimation of GaN powders as gallium source to produce GaN nanorods, thin films or bulk crystals. These sublimation methods rely on the supply of GaN powders. This thesis presents a new route to produce GaN powder from gas-solid chemical reaction between Ga2O3 and NH3 using carbon as reducing agent in a new reactor design. The GaN powder obtained from this route possesses a hexagonal crystal structure and was found to correspond to almost 100% conversion of Ga2O3. The amount of GaN present in the powders varied with experimental parameters. A statistical analysis showed the influence of temperature, carbon/Ga2O3 ratio and experimental time on the production of GaN powder.
3

Surface Chemistry of Hexacyclic Aromatic Hydrocarbons on (2x1) and Modified Surfaces of Si(100)

Li, Qiang January 2004 (has links)
Room-temperature chemisorption of hexacyclic aromatic hydrocarbons on the 2x1, sputtered, oxidized and H-terminated Si(100) surfaces, as well as those upon post treatments of hydrogenation, oxidization and electron irradiation have been investigated by using thermal desorption spectrometry (TDS), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). This work focuses on the effects of the functional groups (phenyl, methyl, vinyl, heteroatom, and H atom) in the chemisorbed aromatic hydrocarbons (benzene, toluene, xylene isomers, styrene and pyridine) on organic functionalization of the Si(100) surface, particularly on such surface processes as cycloaddition, dative adsorption, hydrogen abstraction, desorption, dissociation, diffusion, and condensation polymerization. Unlike the earlier notion that hydrogen evolution in the hydrocarbon/Si(100) systems is the result of hydrocarbon dissociation (into smaller hydrocarbon fragments and H atoms) on the surface, condensation polymerization of the adsorbed aromatic hydrocarbons is proposed in the present work, in order to explain the higher-temperature hydrogen evolution feature in the toluene/Si(100) system. This hypothesis is supported by our TDS results for other hydrocarbon adsorbates, especially in the pyridine/Si(100) system where electron-induced condensation polymerization has been observed at room temperature. The improved techniques in the TDS experiments developed in the present work have enabled us to observe condensation polymerization and the effect of H on the surface processes (via surface reconstruction) on Si(100) for the first time. New analysis methods have also been developed to determine the adsorption coverage from the AES data, and this work has not only improved the accuracy of the elemental-coverage evaluation, but also provided a means to estimate the rate and the order of chemisorption. By using the density functional theory with the Gaussian 98 program, the adsorption geometries and the corresponding adsorption energies of various adsorption phases have been calculated. These computational results have provided useful insights into the chemisorption structures on the Si(100) surface. The present work also presents the development of three kinetics models for hydrogen evolution in the aforementioned aromatic-hydrocarbon systems on Si(100). Based on a modified collision theory with consideration of diffusion, these theoretical models have proven to be quite successful in simulating the observed TDS profiles and in estimating the kinetic parameters for the analysis of condensation polymerization in 2-dimensional diffusion systems. The present work illustrates that TDS experiments can be used effectively with quantum computation and theoretical kinetics modelling to elucidate the intricate nature of organosilicon surface chemistry.
4

Surface Chemistry of Hexacyclic Aromatic Hydrocarbons on (2x1) and Modified Surfaces of Si(100)

Li, Qiang January 2004 (has links)
Room-temperature chemisorption of hexacyclic aromatic hydrocarbons on the 2x1, sputtered, oxidized and H-terminated Si(100) surfaces, as well as those upon post treatments of hydrogenation, oxidization and electron irradiation have been investigated by using thermal desorption spectrometry (TDS), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). This work focuses on the effects of the functional groups (phenyl, methyl, vinyl, heteroatom, and H atom) in the chemisorbed aromatic hydrocarbons (benzene, toluene, xylene isomers, styrene and pyridine) on organic functionalization of the Si(100) surface, particularly on such surface processes as cycloaddition, dative adsorption, hydrogen abstraction, desorption, dissociation, diffusion, and condensation polymerization. Unlike the earlier notion that hydrogen evolution in the hydrocarbon/Si(100) systems is the result of hydrocarbon dissociation (into smaller hydrocarbon fragments and H atoms) on the surface, condensation polymerization of the adsorbed aromatic hydrocarbons is proposed in the present work, in order to explain the higher-temperature hydrogen evolution feature in the toluene/Si(100) system. This hypothesis is supported by our TDS results for other hydrocarbon adsorbates, especially in the pyridine/Si(100) system where electron-induced condensation polymerization has been observed at room temperature. The improved techniques in the TDS experiments developed in the present work have enabled us to observe condensation polymerization and the effect of H on the surface processes (via surface reconstruction) on Si(100) for the first time. New analysis methods have also been developed to determine the adsorption coverage from the AES data, and this work has not only improved the accuracy of the elemental-coverage evaluation, but also provided a means to estimate the rate and the order of chemisorption. By using the density functional theory with the Gaussian 98 program, the adsorption geometries and the corresponding adsorption energies of various adsorption phases have been calculated. These computational results have provided useful insights into the chemisorption structures on the Si(100) surface. The present work also presents the development of three kinetics models for hydrogen evolution in the aforementioned aromatic-hydrocarbon systems on Si(100). Based on a modified collision theory with consideration of diffusion, these theoretical models have proven to be quite successful in simulating the observed TDS profiles and in estimating the kinetic parameters for the analysis of condensation polymerization in 2-dimensional diffusion systems. The present work illustrates that TDS experiments can be used effectively with quantum computation and theoretical kinetics modelling to elucidate the intricate nature of organosilicon surface chemistry.

Page generated in 0.0892 seconds