Spelling suggestions: "subject:"gasturbines -- combustion chamber"" "subject:"gasturbines -- ombustion chamber""
1 |
Modeling of combustion instabilities and their active control in a gas fueled combustorMohanraj, Rajendran 08 1900 (has links)
No description available.
|
2 |
Blow-off in gas turbine combustorsCavaliere, Davide Egidio January 2014 (has links)
This thesis describes an experimental investigation of the flame structure close to the extinction and the blow-off events of non-premixed and spray flames stabilized on an axisymmetric bluff body in a confined swirl configuration. The comparison of flames of different canonical types in the same basic aerodynamic field allows insights on the relative blow-off behaviour. The first part of the thesis describes several velocity measurements in non-reacting and reacting flows. The main usefulness of this data is to provide the aerodynamic flow pattern and some discussion on the velocity field and the related recirculation zones. The velocity and turbulence information obtained are particularly useful for providing data, which is crucial for validation of computational models. The second part describes an experimental investigation of non-premixed stable flames very close to the blow-off condition. The measurements included visualisation of the blow-off transient with 5 kHz OH* chemiluminescence, which allowed a quantification of the average duration of the blow-off transient. OH-PLIF images at 5 kHz for flames far from and close to extinction showed that the non-premixed flame intermittently lifts-off the bluff body, with increasing probability as the fuel velocity increases. The flame sheet shows evidence of localised extinctions, which are more pronounced as approaching blow-off. The measurements include blow-off limits and their attempted correlation. It was found that a correlation based on a Damkohler number does a reasonable job at collapsing the dataset. The final part examines the blow-off behaviour of swirling spray flames for two different fuels: n-heptane and n-decane. The measurements include blow-off limits and their att~mpted correlation, visualisation of the blow-off transient with 5 kHz OH* chemiluminescence, and the quantification of the average duration of the blow-off transient. It was found that the average duration of the blow-off event is in order of the tens of ms for both spray flames (10-16 ms). The blow-off event is therefore a relatively slow process for the spray ~ames using n-heptane and decane fuels. This suggests that control measures, such as fast fuel injection, coupled with appropriate detection, such as with chemiluminescence monitoring, may have a reasonable chance of success in keeping the flame alight very close to the blow-off limit. These results, together with those obtained for the non-premixed gaseous case form a wide body of experimental data available for the validation of turbulent flame models. The quantification of some properties during the blow-off transient can assist studies of extinction based on large-eddy simulation that have a promise of capturing combustion transients.
|
3 |
The numerical similation of oscillations in gas turbine combustion chambersBainbridge, William David Quillen January 2014 (has links)
No description available.
|
4 |
An investigation of the gas fired pulsating combustorKu, Shiuh-Huei 08 1900 (has links)
No description available.
|
5 |
Frequency domain analysis of a gas fired mechanically valved pulse combustorNeumeier, Yedidia 05 1900 (has links)
No description available.
|
6 |
Investigation of combustion instability mechanisms in premixed gas turbinesLieuwen, Tim C. 08 1900 (has links)
No description available.
|
7 |
Reduction of NOx emission for lean prevaporized-premixed combustors /Lee, John C.Y. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 170-180).
|
8 |
Simulation of fuel injectors excited by synthetic microjetsWang, Hongjuan 08 1900 (has links)
No description available.
|
9 |
A method for aircraft afterburner combustion without flameholdersBirmaher, Shai 02 March 2009 (has links)
State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact prime and trigger (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. Downstream of the turbine stages, a low power pilot, or trigger , can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This partial oxidation (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process.
The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet combustor, turbine stage and afterburner. The second facility, termed the Propane Autoignition Combustor (PAC), was essentially a scaled-down, simplified version of the AF. The developed model was used to predict and interpret the AF results and to study the feasibility of the PAT concept at pressures outside the AF operating range. Finally, the Chemkin simulations were used to study the effect of several POx gas compositions on the afterburner combustion process.
|
10 |
The effect of inlet air temperature upon combustion efficiency of a gas turbine combustion chamberMiller, David J. (David Jacob) January 1948 (has links)
M.S.
|
Page generated in 0.1137 seconds