• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 10
  • 10
  • 10
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction Between Secondary Flow & Film Cooling Jets Of A Realistic Annular Airfoil Cascade (High Mach Number)

Nguyen, Cuong Quoc 01 January 2010 (has links)
Film cooling is investigated on a flat plate both numerically and experimentally. Conical shaped film hole are investigated extensively and contribute to the current literature data, which is extremely rare in the open public domain. Both configuration of the cylindrical film holes, with and without a trench, are investigated in detail. Design of experiment technique was performed to find an optimum combination of both geometrical and fluid parameters to achieve the best film cooling performance. From this part of the study, it shows that film cooling performance can be enhanced up to 250% with the trenched film cooling versus non-trenched case provided the same amount of coolant. Since most of the relevant open literature is about film cooling on flat plate endwall cascade with linear extrusion airfoil, the purpose of the second part of this study is to examine the interaction of the secondary flow inside a 3D cascade and the injected film cooling jets. This is employed on the first stage of the aircraft gas turbine engine to protect the curvilinear (annular) endwall platform. The current study investigates the interaction between injected film jets and the secondary flow both experimentally and numerically at high Mach number (M=0.7). Validation shows good agreement between obtained data with the open literature. In general, it can be concluded that with an appropriate film coolant to mainstream blowing ratio, one can not only achieve the best film cooling effectiveness (FCE or η) on the downstream endwall but also maintain almost the same aerodynamic loss as in the un-cooled baseline case. Film performance acts nonlinearly with respect to blowing ratios as with film iv cooling on flat plate, in the other hand, with a right blowing ratio, film cooling performance is not affect much by secondary flow. In turn, film cooling jets do not increase pressure loss at the downstream wake area of the blades.
2

The influence of film cooling on turbine aerodynamic performance

Lim, Chia Hui January 2011 (has links)
No description available.
3

The attenuation and reduction of a simulated hot streak due to mainstream turbulence, hot streak pitch position and film cooling

Jenkins, Sean Craig 28 August 2008 (has links)
Not available / text
4

An experimental investigation in the cooling of a large gas turbine wheelspace

Yep, Francis W. 12 1900 (has links)
No description available.
5

An investigation of scaling parameters governing film-cooling

Forth, C. J. Patrick January 1985 (has links)
Experiments were performed using an Isentropic Light Piston Tunnel, a transient facility which enables conditions representative of those in engines to be attained. The results were interpreted using a superposition model, which is shown to be a valuable and concise method of characterising the effects of injection.
6

Gas turbine impingement cooling system studies

Son, Changmin January 2005 (has links)
No description available.
7

Development of a photovoltaic reverse osmosis demineralization fogging for improved gas turbine generation output

Lameen, Tariq M. H. January 2018 (has links)
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2018. / Gas turbines have achieved widespread popularity in industrial fields. This is due to the high power, reliability, high efficiency, and its use of cheap gas as fuel. However, a major draw-back of gas turbines is due to the strong function of ambient air temperature with its output power. With every degree rise in temperature, the power output drops between 0.54 and 0.9 percent. This loss in power poses a significant problem for utilities, power suppliers, and co-generations, especially during the hot seasons when electric power demand and ambient temperatures are high. One way to overcome this drop in output power is to cool the inlet air temperature. There are many different commercially available means to provide turbine inlet cooling. This disserta-tion reviews the various technologies of inlet air cooling with a comprehensive overview of the state-of-the-art of inlet fogging systems. In this technique, water vapour is being used for the cooling purposes. Therefore, the water quality requirements have been considered in this thesis. The fog water is generally demin-eralized through a process of Reverse Osmosis (RO). The drawback of fogging is that it re-quires large amounts of demineralized water. The challenge confronting operators using the fogging system in remote locations is the water scarcity or poor water quality availability. However, in isolated hot areas with high levels of radiation making use of solar PV energy to supply inlet cooling system power requirements is a sustainable approach. The proposed work herein is on the development of a photovoltaic (PV) application for driv-ing the fogging system. The design considered for improved generation of Acaica power plant in Cape Town, South Africa. In addition, this work intends to provide technical infor-mation and requirements of the fogging system design to achieve additional power output gains for the selected power plant.
8

Heat Transfer In A Coupled Impingement-effusion Cooling System

Miller, Mark W 01 January 2011 (has links)
Gas turbine engines are prevalent in the today’s aviation and power generation industries. The majority of commercial aircraft use a turbofan gas turbine engines. Gas turbines used for power generation can achieve thermodynamic efficiencies as high as 60% when coupled with a steam turbine as part of a combined cycle. The success of gas turbines is a direct result of a half century’s development of the technology necessary to create such efficient, powerful, and reliable machines. One key area of technical advancement is the turbine cooling system. In short, increasing the turbine inlet temperature leads to a rise in cycle efficiency. Before the development of modern turbine cooling schemes, this temperature was limited by the softening temperature of the metallic turbine components. The evolution of component cooling systems – in conjunction with metallurgical advancements and the introduction of Thermal Barrier Coatings (TBC) – allowed for gradual increases in power output and efficiency. Today, the walls of gas turbine combustors are protected by a cool film that bypassed combustion; the 1st (and often 2nd) stage turbine blades and vanes are cooled via internal convection, a combination of turbulent channel flow, pin fin arrays, and impingement cooling; and some coolant air is bled onto the external surface of the blade and the blade endwall to establish a protective film on the exposed geometry. Modern research continues to focus on the optimization of these cooling designs, and a better understanding of the physics behind fluid behavior. The current study focuses on one particular cooling design: an impingement-effusion cooling system. While a single entity, the cooling schemes used in this system can be separated into impingement cooling on the backside iv of the cooled component and full coverage film cooling on the exposed surface. The result of this combination is a very high level of cooling effectiveness. The goal of this study is to explore a wide range of geometrical parameters and their effect on the overall cooling performance. Several parameters are taken outside the ranges normally investigated by the available literature. New methods of data comparison and normalization are offered in order to create an objective comparison of different configurations. Particular attention is given to the total coolant spent per unit surface area cooled. This study is also unique as it is a multi-modal heat transfer study, unlike the majority of impingement-effusion investigations, which only evaluate impingement heat transfer. Through determination of impingement heat transfer, film cooling effectiveness, and film cooling heat transfer on the target wall, a simplified heat transfer model of the cooled component is developed to show the relative impact of each parameter on the overall cooling effectiveness. The use of Temperature Sensitive Paint (TSP) for data acquisition allows for high resolution local heat transfer and effectiveness results. This has a quantitative benefit, giving the ability to average as desired and/or compare local data, for example the lateral distribution of film cooling effectiveness. However, the qualitative benefit of viewing the contours of heat transfer coefficient under an impinging jet array or downstream of a film cooling jet is instrumental in drawing conclusions about the behavior of the flow. The local data provides, in essence, a flow visualization on the test surface and adds (quite literally) another dimension to the heat transfer results. Impingement arrays with local extraction of coolant via effusion are able to produce higher overall heat transfer, as no significant cross flow is present to deflect the impinging jets. Low jet-to-target-plate spacing produces the highest yet most non-uniform heat transfer v distribution; at high spacing the heat transfer rate is much less sensitive to impingement height. Arrays with high hole-to-hole spacing and high jet Reynold’s number are more effective (per mass of coolant used) than tightly spaced holes at low jet Reyonld’s number. On the effusion side, staggered hole arrangements provide significantly higher film cooling effectiveness than their in-line counterparts as the staggered arrangement minimizes jet interactions and promotes a more even lateral distribution of coolant. These full coverage film cooling geometries typically show increases in effectiveness with each row of injection. Some additional cases were show with 15 film cooling rows, and generally the adiabatic wall temperature was decreasing through the last row. In the recovery region, results were highly dependant on blowing ratio; injection of excess coolant into the boundary layer at high blowing ratio allowed for cooling effectiveness to penetrate well downstream of the end of the array. From a heat transfer standpoint, compound angle injection resulted in higher enhancement than purely inclined injection, but this negative effect was outweighed by the substantial increase in film cooling effectiveness with the compounded geometry. Overall, the additive film superposition method under-predicted full coverage film cooling effectiveness trends for staggered hole arrangements; however, with more accurate estimation (or measurement) of recovery region trends for a single row of holes, this method may produce an acceptable result.
9

Fluid mechanics and heat transfer in the blade channels of a water-cooled gas turbine.

El-Masri, Maher Aziz January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Vita. / Includes bibliographical references. / Ph.D.
10

Film Cooling With Wake Passing Applied To An Annular Endwall

Tran, Nghia Trong 01 January 2010 (has links)
Advancement in turbine technology has far reaching effects on today's society and environment. With more than 90% of electricity and 100% of commercial air transport being produced by the usage of gas turbine, any advancement in turbine technology can have an impact on fuel used, pollutants and carbon dioxide emitted to the environment. Within the turbine engine, fully understanding film cooling is critical to reliability of a turbine engine. Film cooling is an efficient way to protect the engine surface from the extremely hot incoming gas, which is at a temperature much higher than allowable temperature of even the most advanced super alloy used in turbine. Film cooling performance is affected by many factors: geometrical factors and as well as flow conditions. In most of the film cooling literature, film effectiveness has been used as criterion to judge and/or compare between film cooling designs. Film uniformity is also a critical factor, since it determines how well the coolant spread out downstream to protect the hot-gas-path surface of a gas turbine engine. Even after consideration of all geometrical factors and flow conditions, the film effectiveness is still affected by the stator-rotor interaction, in particular by the moving wakes produced by upstream airfoils. A complete analysis of end wall film cooling inside turbine is required to fully understand the phenomena. This full analysis is almost impossible in the academic arena. Therefore, a simplified but critical experimental rig and computational fluid model were designed to capture the effect of wake on film cooling inside an annular test section. The moving wakes are created by rotating a wheel iv with 12 spokes or rods with a variable speed motor. Thus changing the motor speed will alter the wake passing frequency. This design is an advancement over most previous studies in rectangular duct, which cannot simulate wakes in an annular passage as in an engine. This rig also includes film injection that allows study of impact of moving wakes on film cooling. This wake is a simplified representation of the trailing edge created by an upstream airfoil. An annulus with 30° pitch test section is considered in this study. This experimental rig is based on an existing flat plate film cooling (BFC) rig that has been validated in the past. Measurement of velocity profiles within the moving wake downstream from the wake generator is used to validate the CFD rotating wake model. The open literature on film cooling and past experiments performed in the laboratory validated the CFD film cooling model. With these validations completed, the full CFD model predicts the wake and film cooling interaction. Nine CFD cases were considered by varying the film cooling blowing ratio and the wake Strouhal number. The results indicated that wakes highly enhance film cooling effectiveness near film cooling holes and degrades the film blanket downstream of the film injection, at the moment of wake passing. However, the time-averaged film cooling effectiveness is more or less the same with or without wake

Page generated in 0.0703 seconds