• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude expérimentale de l'interaction d'une détonation gazeuse avec un spray d'eau / Experimental Study of the Interaction Between a Gaseous Detonation with a Water Spray

Jarsale, Geoffrey 12 October 2017 (has links)
Ce projet de thèse expérimentale vise à étudier l'interaction d'une détonation se propageant dans une atmosphère gazeuse réactive ensemencée d'un spray d'eau, au sein d'un tube vertical de 4 m de haut ayant une section carré de 52 mm de côté. Le dispositif permet de mesurer les célérités de propagation de la détonation et les niveaux de pression associée, ainsi que d'analyser la structure cellulaire. La caractérisation du spray d'eau par la méthode PDI a permis d'évaluer le diamètre moyen des gouttelettes à 10 μm. Les densités apparentes de spray peuvent atteindre 200 à 250 g/m³.La première étude a consisté à faire varier la dilution Z en argon de 3 à 28, ainsi que la quantité X d'eau injectée (YH2O pouvant atteindre 15%), dans des mélanges de types C2H4-O2-Zar-XH2O(l). Cette étude a permis de faire varier les longueurs caractéristiques de la détonation par rapport à celles du spray. Deux comportements très différents ont été mis en évidence, suivant la taille plus petite (premier comportement) ou plus grande (deuxième comportement) de la longueur d’induction chimique par rapport à celle de l’atomisation secondaire des gouttelettes, dans les conditions de détonation. Ainsi dans le cas idéal où l’épaisseur hydrodynamique – distance moyenne entre le choc et la surface sonique – englobe l’ensemble des interactions diphasiques, la célérité de détonation sera celle de Chapman-Jouguet diphasique, inférieure au cas purement gazeux. De plus dans le cas du premier comportement, la vapeur issue de la phase dispersée ne participera pas l'agrandissement de la structure cellulaire, a contrario du second.Afin de préciser le mécanisme responsable du deuxième comportement, la seconde étude s'est quant à elle attachée à l'analyse de l'influence du spray par rapport à la régularité de la structure cellulaire de la détonation. Deux mélanges sont ainsi considérés, générant une détonation à structure régulière (C2H4-O2-28Ar-XH2O(l)) ou irrégulière (C2H4-O2-11.286N2-XH2O(l)). Cette étude a confirmé que dans cette configuration, la vapeur d’eau issue de la phase dispersée liquide participe alors à l'agrandissement de la structure cellulaire. Elle a également permis de montrer la plus grande résilience des détonations irrégulières par rapport aux détonations régulières vis-à-vis des pertes pariétales. Il a également été constaté que la perte de régularité de la structure cellulaire liée à l'ajout d'eau est associée à l'augmentation de l'énergie d'activation réduite Ea/RTvn et du facteur de stabilité, expliquant par ailleurs l'apparition d'une sous-structure cellulaire, semblable à celle observée dans les détonations initialement irrégulières. La vapeur d’eau ainsi produite par l’évaporation du spray agit alors comme un diluant inerte en aval du choc incident. / The interaction between a gaseous detonation and a water spray was experimentally studied in a 4 m high vertical detonation tube with a 52 mm by 52 mm square section. Detonation pressure signals, average velocity and cellular patterns were recorded.The spray, produced by an ultrasonic generator and injected at the bottom of the tube, was characterized by the Phase Doppler Interferometry (PDI) method. The spray analysis revealed an average droplet diameter of10 μm with Liquid Water Content (LWC) up to 200-250 g/m3. The first study compared the detonation and spray lengths in stoichiometric CzH4-02-Ar-H20(l) mixtures for argon dilution ranging from 3 to 28 and water mass fraction up to Y ttzo 15%. Two distinct behaviors were revealed, driven by the length of the induction zone compared to the secondary breakup length of the spray droplets. It is found that in the ideal case where the hydrodynamic thickness (representing the average length between the shock and the sonic surface) encompass the endothermic multiphase processes, the experimental detonation velocity is equivalent to the Ideal Chapman Jouguet multiphase velocity, which is lower than the ideal detonation velocity in a dry mixture. Moreover, when the induction length is shorter than the secondary breakup length, the water vapor produced by the droplets breakup is not involved in the cellular structure enlargement.The second study highlighted the influence of the water spray on the cellular structure regularity, by using mixtures of CzH.-02-28Ar-H20(l) and C2H.-02-N2-H20(l) with various equivalence ratio. The experiments show that irregular detonations are more resilient compared to regular ones. Moreover the loss of the detonation regularity generated by the water spray addition and the increase in both the reduced activation energy Ea/RTvn and the stability factor are responsible for the sub-structure generation, similar as the one observed in initially irregular detonation. Furthermore, ZND computations indicated that water mainly 5played a thermal role by diluting the reactive gaseous mixture and seemed to have a limited impact on the kinetic nrocesses.
2

Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation

Bhattacharjee, Rohit Ranjan 23 August 2013 (has links)
Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification. If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection. All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source. Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas. Alternatively, the Kelvin-Helmholtz instability can produce vortices along the slipline that may lead to mixing between burned-unburned gases and potentially increase combustion rates near the transverse wave. However, the mechanism(s) that causes the transverse wave to re-initiate into a detonation wave remains to be satisfactorily resolved.
3

Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation

Bhattacharjee, Rohit Ranjan January 2013 (has links)
Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification. If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection. All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source. Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas. Alternatively, the Kelvin-Helmholtz instability can produce vortices along the slipline that may lead to mixing between burned-unburned gases and potentially increase combustion rates near the transverse wave. However, the mechanism(s) that causes the transverse wave to re-initiate into a detonation wave remains to be satisfactorily resolved.

Page generated in 0.1049 seconds