• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 27
  • 12
  • 10
  • 7
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 46
  • 41
  • 37
  • 30
  • 23
  • 18
  • 18
  • 18
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Desenvolvimento de um sistema de verificação dosimétrica tridimensional utilizando Solução Fricke gel na aplicação para a verificação da Radioterapia em Arco Modulado Volumétrico (VMAT) nos tratamentos com movimentação do alvo pela respiração / Verification system development a dosimetric tridimensional using Solution Fricke gel in the application for verification of radiation therapy in arc modulated volumetric (VMAT) in treatment with target moving for breathing

Sakuraba, Roberto Kenji 30 July 2015 (has links)
A Radioterapia em arco modulado volumétrico (VMAT) é uma das modalidades mais avançadas em teleterapia para o tratamento de câncer. Os diversos avanços tecnológicos, bem como a evolução das técnicas de tratamento tornaram o VMAT como uma das modalidades de estado da arte para o tratamento de alguns cânceres. Parte deste avanço é creditada à melhoria na acurácia e na prescrição de dose absorvida recomendada ao paciente ao longo dos anos. Este avanço permite que atualmente seja possível realizar os cálculos dosimétricos, por meio de sistemas de planejamento computadorizado, considerando as heterogeneidades dos pacientes, tais como: tecidos e órgãos com composições diferentes da água (meio de referência em radioterapia), contorno do paciente individualizado e o movimento dos tumores com a respiração. Tais avanços demandam o controle de qualidade destas ferramentas, com objetivo de assegurar que todo o processo de tratamento seja satisfatório e acurado. A comunidade dispõe poucos sistemas experimentais capazes de avaliar, considerando os níveis de incerteza, se os sistemas de planejamento computadorizados são aptos a considerar a movimentação dos alvos nos tratamentos com VMAT. Neste trabalho serão apresentados os resultados obtidos empregando um objeto simulador Fricke Xylenol Gel, com capacidade de mensurar as diferenças introduzidas pela movimentação, utilizando Imagem por Ressonância Magnética - MRI e comparando qualitativamente e quantitativamente os resultados. São discutidas as principais etapas de desenvolvimento deste objeto simulador, seus resultados experimentais, conclusões. / Volumetric Modulated Arc Therapy (VMAT) is one of the methods most commonly used in teletherapy to treat cancer. The various technological advances and the evolution of treatment techniques made the VMAT as one of the state of the art methods for the treatment of some cancers. Part of this improvement is credited to improvements in accuracy and prescription dose absorbed recommended to the patient over the years. This advance allows currently is possible to perform dosimetric calculations by means of the computerized planning system, considering the heterogeneity of patients, such as tissues and organs with different water compositions medium (reference radiation), and individual patient contour the movement of tumors breathing. Such advances require quality control of these tools, in order to ensure that the entire treatment process is satisfactory and accurate. Up to now, the community lacks an experimental system capable of evaluating, considering the uncertainty levels if the computerized planning systems are able to consider the movement of targets in the treatments with VMAT. In this paper, will be presented the results obtained with the phantom Fricke Xylenol Gel, capable of measuring the differences introduced by movement using the Magnetic Resonance Image - MRI and compared qualitatively and quantitatively. The main stages of the phantom development, their experimental results, conclusions and comparisons with other systems are discussed.
32

Desenvolvimento de um sistema de verificação dosimétrica tridimensional utilizando Solução Fricke gel na aplicação para a verificação da Radioterapia em Arco Modulado Volumétrico (VMAT) nos tratamentos com movimentação do alvo pela respiração / Verification system development a dosimetric tridimensional using Solution Fricke gel in the application for verification of radiation therapy in arc modulated volumetric (VMAT) in treatment with target moving for breathing

Roberto Kenji Sakuraba 30 July 2015 (has links)
A Radioterapia em arco modulado volumétrico (VMAT) é uma das modalidades mais avançadas em teleterapia para o tratamento de câncer. Os diversos avanços tecnológicos, bem como a evolução das técnicas de tratamento tornaram o VMAT como uma das modalidades de estado da arte para o tratamento de alguns cânceres. Parte deste avanço é creditada à melhoria na acurácia e na prescrição de dose absorvida recomendada ao paciente ao longo dos anos. Este avanço permite que atualmente seja possível realizar os cálculos dosimétricos, por meio de sistemas de planejamento computadorizado, considerando as heterogeneidades dos pacientes, tais como: tecidos e órgãos com composições diferentes da água (meio de referência em radioterapia), contorno do paciente individualizado e o movimento dos tumores com a respiração. Tais avanços demandam o controle de qualidade destas ferramentas, com objetivo de assegurar que todo o processo de tratamento seja satisfatório e acurado. A comunidade dispõe poucos sistemas experimentais capazes de avaliar, considerando os níveis de incerteza, se os sistemas de planejamento computadorizados são aptos a considerar a movimentação dos alvos nos tratamentos com VMAT. Neste trabalho serão apresentados os resultados obtidos empregando um objeto simulador Fricke Xylenol Gel, com capacidade de mensurar as diferenças introduzidas pela movimentação, utilizando Imagem por Ressonância Magnética - MRI e comparando qualitativamente e quantitativamente os resultados. São discutidas as principais etapas de desenvolvimento deste objeto simulador, seus resultados experimentais, conclusões. / Volumetric Modulated Arc Therapy (VMAT) is one of the methods most commonly used in teletherapy to treat cancer. The various technological advances and the evolution of treatment techniques made the VMAT as one of the state of the art methods for the treatment of some cancers. Part of this improvement is credited to improvements in accuracy and prescription dose absorbed recommended to the patient over the years. This advance allows currently is possible to perform dosimetric calculations by means of the computerized planning system, considering the heterogeneity of patients, such as tissues and organs with different water compositions medium (reference radiation), and individual patient contour the movement of tumors breathing. Such advances require quality control of these tools, in order to ensure that the entire treatment process is satisfactory and accurate. Up to now, the community lacks an experimental system capable of evaluating, considering the uncertainty levels if the computerized planning systems are able to consider the movement of targets in the treatments with VMAT. In this paper, will be presented the results obtained with the phantom Fricke Xylenol Gel, capable of measuring the differences introduced by movement using the Magnetic Resonance Image - MRI and compared qualitatively and quantitatively. The main stages of the phantom development, their experimental results, conclusions and comparisons with other systems are discussed.
33

Structural rearrangements during gating in cyclic nucleotide-modulated channels /

Craven, Kimberley Beth. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 121-137).
34

The effects of intrafraction motion on dose heterogeneity

Sidhu, Sabeena 11 April 2005
Intrafraction motion has long been suspected of causing inaccuracies in the resultant dose delivered to the patient. This study attempts to determine how breathing motion affects intact-breast cancer patients for three different treatment techniques commonly used in the clinic: physical wedge compensators (PWs), enhanced dynamic wedges (EDWs), and step-and-shoot intensity modulated radiation therapy (ssIMRT). Some of the effects of intrafraction motion can be eliminated with Gating Therapy. In this study, we have also investigated the efficiency of a Real-Time Position Management Gating System. In order to mimic patient breathing, equipment has been designed to simulate respiratory motion to a first order approximation. A breast phantom has also been designed to represent patient tissue and shape. Film was used as a dosimeter and static dosimetry data were used as a control for comparison. Three velocities of the breast phantom were studied, and Gating Therapy was introduced for each data set. Dose area histograms were calculated for a breast and lung planning target area (PTA), and Normalized Agreement Test (NAT) Indexes were calculated in reference to the static case. Our study shows that the results are dependent on the respiratory rate and the wedge angle and that deviation from the static case is highest if the collimator speed is of the same magnitude as the speed of the target. Generally, there is a large overdosage to the lung PTA and a large underdosage to the breast PTA. However, with the implementation of Gating Therapy, these dose discrepancies are dramatically reduced. The areas of high and low dose within the treatment field observed in this study can be related to other treatment sites affected by respiratory motion. Based on these results, we highly recommend using Gating Therapy for all treatments that may be affected by intrafraction organ motion.
35

The effects of intrafraction motion on dose heterogeneity

Sidhu, Sabeena 11 April 2005 (has links)
Intrafraction motion has long been suspected of causing inaccuracies in the resultant dose delivered to the patient. This study attempts to determine how breathing motion affects intact-breast cancer patients for three different treatment techniques commonly used in the clinic: physical wedge compensators (PWs), enhanced dynamic wedges (EDWs), and step-and-shoot intensity modulated radiation therapy (ssIMRT). Some of the effects of intrafraction motion can be eliminated with Gating Therapy. In this study, we have also investigated the efficiency of a Real-Time Position Management Gating System. In order to mimic patient breathing, equipment has been designed to simulate respiratory motion to a first order approximation. A breast phantom has also been designed to represent patient tissue and shape. Film was used as a dosimeter and static dosimetry data were used as a control for comparison. Three velocities of the breast phantom were studied, and Gating Therapy was introduced for each data set. Dose area histograms were calculated for a breast and lung planning target area (PTA), and Normalized Agreement Test (NAT) Indexes were calculated in reference to the static case. Our study shows that the results are dependent on the respiratory rate and the wedge angle and that deviation from the static case is highest if the collimator speed is of the same magnitude as the speed of the target. Generally, there is a large overdosage to the lung PTA and a large underdosage to the breast PTA. However, with the implementation of Gating Therapy, these dose discrepancies are dramatically reduced. The areas of high and low dose within the treatment field observed in this study can be related to other treatment sites affected by respiratory motion. Based on these results, we highly recommend using Gating Therapy for all treatments that may be affected by intrafraction organ motion.
36

Cellular Function and Localization of Circadian Clock Proteins in Cyanobacteria

Dong, Guogang 2008 December 1900 (has links)
The cyanobacterium Synechococcus elongatus builds a circadian clock on an oscillator comprised of three proteins, KaiA, KaiB, and KaiC, which can recapitulate a circadian rhythm of KaiC phosphorylation in vitro. The molecular structures of all three proteins are known, and the phosphorylation steps of KaiC, the interaction dynamics among the three Kai proteins, and a weak ATPase activity of KaiC have all been characterized. A mutant of a clock gene in the input pathway, cikA, has a cell division defect, and the circadian clock inhibits the cell cycle for a short period of time during each cycle. However, the interaction between the circadian cycle and the cell cycle and the molecular mechanisms underlying it have been poorly understood. In addition, the subcellular localization of clock proteins and possible localization dynamics, which are critical in the timing circuit of eukaryotic clock systems and might also shed light on the interaction between circadian cycle and cell cycle, have remained largely unknown. A combination of genetics, cell biology, and microscopy techniques has been employed to investigate both questions. This work showed that the cell division defect of a cikA mutant is a function of the circadian clock. High ATPase activity of KaiC coincides with the inhibition of cytokinesis by the circadian clock. CikA likely represses KaiC's ATPase activity through an unknown protein, which in cikA's absence stimulates both the ATPase and autokinase activities independently of KaiA or KaiB. SasA-RpaA acts as an output in the control of cell division, and the localization of FtsZ is the target, although it still remains to be seen how RpaA, directly or indirectly, inhibits FtsZ localization. The project also showed that clock proteins are localized to the cell poles. KaiC is targeted to the cell pole in a phosphorylation-dependent manner. KaiB and CikA are also found at the poles independently of KaiC. KaiA likely only localizes to the cell pole during the dephosphorylation phase, which is dependent on both KaiB and KaiC, specifically on the phosphorylation of KaiC at S431. Overall, significant progress was made in both areas and this project sheds light on how the circadian oscillator operates in cyanobacterial cells and interacts with another fundamental cellular function.
37

Implementation of Variable-Latency Floating-Point Multipliers for Low-Power Applications

Hong, Hua-yi 29 July 2008 (has links)
Floating-point multipliers are typically power hungry which is undesirable in many embedded applications. This paper proposes a variable-latency floating-point multiplier architecture, which is suitable for low-power, high-performance, and high-accuracy applications. The architecture splits the significand multiplier into upper and lower parts, and predicts the required significand product and sticky bit from upper part. In the case of correct prediction, the computation of lower part is disabled and the rounding operation is significantly simplified so that floating-point multiplication can be completed early. Finally, detailed design and simulation of the floating-point multiplier is presented, together with its evaluation by comparing power consumption with the fast and conventional floating-point multipliers. Experimental results demonstrate that the proposed double-precision multiplier consumes up to 26.41% and 24.97% less power and energy than the fast floating-point multiplier respectively at the expense of only small area and delay overhead. In addition, the results also show that the performance of proposed floating-point multiplier is very approximate to that of fast floating-point multipliers.
38

Power Optimization for 3D Vertex Shader Using Clock Gating

Yen, Huai-yu 16 August 2008 (has links)
With technology increasingly and the needs of high performance and multiple functionalities, power dissipation has be a bottleneck in microprocessors. And clock power is the most percentage of total power dissipation. In our thesis, we will provide an effective clock gating methodology that has not more overhead possibly to decrease total power dissipations based on SIMD 3D vertex shader. Except for classify all instructions according the instruction flow, we also consider the relationship of pipeline stage and are based on register bank to control execution units more flexibility. Using clock gating not only can decrease clock power, but also decrease the power of hardware modules succeed the registers with clock gating that be controlled. In our thesis, we will analysis which clock gating version is suitable because there is not definitely to disable the clock of all pipeline registers of all pipeline stages and hold all opportunities that can disable the clock. We will explain on experimental results and show the final low power version. With experimental results, the clock gating methodology that we bring can decrease almost 30% power with increase less than 2% area. And collection of instruction schedule algorithm for high performance that can decrease 41% energy at most. In new version of four vertexes execute sequentially, using clock gating can also decrease almost 10% power dissipation. And collection of instruction schedule algorithm for this version not only has better performance result but also can decrease 16% energy at most.
39

Software optimization for power consumption in DSP embedded systems

Temple, Andrew Richard 09 December 2013 (has links)
This paper is intended to be a resource for programmers needing to optimize a DSP’s power consumption strictly through software. The paper will provide a basic introduction into power consumption background, measurement techniques, and then go into the details of power optimization, focusing on three main areas: algorithmic optimization, taking advantage of hardware features (low power modes, clock control, and voltage control), and data flow optimization with a discussion into the functionality and power considerations when using fast SRAM type memories (common for cache) and DDR SDRAM. This work includes examples and results as tested on Freescale’s current state of the art Digital Signal Processors. / text
40

Towards Intelligent Tumor Tracking and Setup Verification in Radiation Therapy For Lung Cancer

Xu, Qianyi January 2007 (has links)
Lung cancer is the most deadly cancer in the United States. Radiation therapy uses ionizing radiation with high energy to destroy lung tumor cells by damaging their genetic material, preventing those cells from reproducing. The most challenging aspect of modern radiation therapy for lung cancer is the motion of lung tumors caused by patient breathing during treatment. Most gating based radiotherapy derives the tumor motion from external surrogates and generates a respiratory signal to trigger the beam. We propose a method that monitors internal diaphragm motion, which can provide a respiratory signal that is more highly correlated to lung tumor motion compared to the external surrogates. We also investigate direct tracking of the tumor in fluoroscopic video imagery. We tracked fixed tumor contours in fluoroscopic videos for 5 patients. The predominant tumor displacements are well tracked based on optical flow. Some tumors or nearby anatomy features exhibit severe nonrigid deformation, especially in the supradiaphragmatic region. By combining Active Shape Models and the respiratory signal, the deformed contours are tracked within a range defined in the training period. All the tracking results are validated by a human expert and the proposed methods are promising for applications in radiotherapy. Another important aspect of lung patient treatment is patient setup verification, which is needed to reduce inter- and intra-fractions geometry uncertainties and ensure precise dose delivery. Currently, there is no universally accepted method for lung patient verification. We propose to register 4DCT and 2D x-ray images taken before treatment to derive the couch shifts necessary for precise radiotherapy. The proposed technique leads to improved patient care.

Page generated in 0.105 seconds