Spelling suggestions: "subject:"gauche effect"" "subject:"fauche effect""
1 |
The influence of the C-N⁺ ----- F-C charge dipole interaction in fluoro organic chemistryGooseman, Natalie Elizabeth Jane January 2008 (has links)
Chapter 1 introduces the discovery of elemental fluorine by H. Moissan and some uses of inorganic fluoride. Organo fluoro compounds and their place in pharmaceuticals and agrochemicals are also introduced. The general properties of fluorine and the C-F bond are discussed as well as conformational influences such as the fluorine gauche effect. Chapter 2 describes the C-N⁺------F-C charge dipole interactions within protonated amines and explains the influence of a β fluorine on the conformation on various crystalline structures. A number of systems are synthesised which contain this charge dipole interaction, such as four, five and eight membered aza heterocycles. It was demonstrated that these provided a N⁺-C-C-F gauche torsion angle. This electrostatic effect was also observed in the non-protonated N-ethylpyridinium cations possessing a fluorine β to the charged nitrogen. This clearly showed that hydrogen bonding is not playing a part in the observed N⁺-C-C-F gauche interactions and that it is a purely electrostatic effect. Chapter 3 discusses the effort to explore the C-O⁺-------F-C charge dipole interaction and the synthetic approaches that were taken towards candidate substances. However in the event a Grignard reaction on a fluoro cyclohexanone was found to provide an unexpected product where rearrangement followed by fluorine elimination had occurred. Chapter 4 details the experimental procedures for the compounds synthesised in this thesis and an Appendix outlines the detail of 24 crystal structures that were solved during this research.
|
2 |
Synthesis and study of heteroatomic spirocyclic scaffoldsHilmey, David George 13 March 2006 (has links)
No description available.
|
3 |
1,3-Disubstituted-tetrahydro-β-carbolines: A New Method for Stereochemical Assignment and Synthesis of Potential Antimalarial AgentsCagasova, Kristyna 21 June 2021 (has links)
Malaria is a serious mosquito-borne disease affecting the majority of Earth's southern hemisphere. While consistent efforts to curb malaria spread throughout 20th and early 21st century were largely successful, the recent rise in resistance to antimalarial treatments resulted in an increasing incidence rate and stalling mortality rate. This trend clearly signifies the need for the development of novel antimalarial agents able to circumvent current drug-resistance mechanisms.
In 2014, in collaboration with Prof. Maria Belen Cassera from the University of Georgia, our group found that compound 1a (1R,3S-MMV008138), discovered from the publicly available Malaria Box, targets an essential biosynthetic pathway (MEP pathway) of malaria-causing parasite Plasmodium falciparum. Analogs of 1a synthesized in our laboratory were found effective against multi-resistant Dd2 strain of P. falciparum which, together with an absence of MEP pathway in humans, suggests that potent analogs of 1a may be safe and efficient antimalarial drug candidates.
The initial bioassay studies determined that only one of four possible MMV008138 stereoisomers satisfactorily inhibits the target PfIspD enzyme. Thus a secure determination of stereochemistry in 1a analogs was of utmost importance to the structure-activity relationship studies performed in our group. The second chapter of this work discusses the validation of the previously known empirical stereoassignment method based on analysis of relative shift of 13C NMR resonances between cis and trans diastereomers and compares it to a new method based on 3JHH coupling constants developed in our laboratory. We demonstrate that the new method relying on the analysis of 1H-1H coupling is reliable over large samples of experimental data and suitable even when only a single diastereomer is produced in the synthetic process. Importantly, the origin of 3JHH coupling constants is well understood, unlike the source of relative differences in 13C NMR shifts observed in the older method. The empirical observations for both stereoassignment methods are supported by extensive density-functional theory calculations, which validate the new 1H-1H coupling-based assignment but do not provide a conclusive explanation for the origin of the 13C NMR-based method.
In the third chapter, we discuss the replacement of the carboxylic acid moiety in 1a by alternative functional groups promising improved toxicity and bioavailability profile. The total synthesis of tetrazole (trans-23a) and phosphonic acid ((±)-62a) derivatives of 1a is discussed in detail. The tetrazole analog 23a was previously synthesized in the Carlier group as a diastereomeric mixture of cis and trans isomers (dr = 3:7), and it was tested for growth inhibition of multi-resistant P. falciparum with promising results. Later, the synthesis was revisited to obtain a stereochemically pure sample of trans-23a, which was expected to show improved potency compared to the original sample. Furthermore, the synthesis of pure trans-23a confirmed the accuracy of the previous assignment of cis and trans diastereomers in the mixture. Unfortunately, neither analog showed an improvement in potency relative to 1a. / Doctor of Philosophy / The most severe form of malaria disease is caused by the parasite, Plasmodium falciparum, which gives rise to over 200 million infections and more than 400 thousand deaths every year, the majority of which affect young children. In recent years, the effectiveness of clinically used antimalarial medicines decreased due to an increase in drug-resistant strains of P. falciparum. Therefore, there is an urgent need for new antimalarial agents that could bypass the emerging resistance.
A promising candidate for a new antimalarial drug is a molecule named MMV008138. This molecule exists in four distinct forms called stereoisomers. Stereoisomers are molecules with the same chemical formula, but the atoms in each molecule are positioned differently. Only one of MMV008138's four stereoisomers (1a) was effective in killing the P. falciparum. The second chapter of this work discusses a new method for identifying stereoisomers in molecules like MMV008138. We demonstrate that the new method is both reliable and simpler than the previously used procedures.
The third chapter of this dissertation discusses the preparation of two new compounds based on the structure of 1a that contain modifications promising improved biological activity. Unfortunately, neither of these two molecules was able to kill the P. falciparum efficiently.
|
Page generated in 0.0571 seconds