• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supersymmetric Quantum Mechanics and the Gauss-Bonnet Theorem

Olofsson, Rikard January 2018 (has links)
We introduce the formalism of supersymmetric quantum mechanics, including super-symmetry charges,Z2-graded Hilbert spaces, the chirality operator and the Wittenindex. We show that there is a one to one correspondence of fermions and bosons forenergies different than zero, which implies that the Witten index measures the dif-ference of fermions and bosons at the ground state. We argue that the Witten indexis the index of an elliptic operator. Quantization of the supersymmetric non-linearsigma model shows that the Witten index equals the Euler characteristic of the un-derlying Riemannian manifold over which the theory is defined. Finally, the pathintegral representation of the Witten index is applied to derive the Gauss-Bonnettheorem. Apart from this we introduce elementary mathematical background in thesubjects of topological invariance, Riemannian manifolds and index theory / Vi introducucerar formalismen f ̈or supersymmetrisk kvantmekanik, d ̈aribland super-symmetryladdningar,Z2-graderade Hilbertrum, kiralitetsoperatorn och Wittenin-dexet. Vi visar att det r ̊ader en till en-korrespondens mellan fermioner och bosonervid energiniv ̊aer skillda fr ̊an noll, vilket medf ̈or att Wittenindexet m ̈ater skillnadeni antal fermioner och bosoner vid nolltillst ̊andet. Vi argumenterar f ̈or att Wittenin-dexet ̈ar indexet p ̊a en elliptisk operator. Kvantisering av den supersymmetriskaicke-linj ̈ara sigmamodellen visar att Wittenindexet ̈ar Eulerkarakteristiken f ̈or denunderliggande Riemannska m ̊angfald ̈over vilken teorin ̈ar definierad. Slutligenapplicerar vi v ̈agintegralrepresentationen av Wittenindexet f ̈or att h ̈arleda Gauss-Bonnets sats. Ut ̈over detta introduceras ocks ̊a grundl ̈aggande matematisk bakrundi ämnena topologisk invarians, Riemmanska m ̊angfalder och indexteori.

Page generated in 0.0509 seconds