• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical Models and Algorithms for Studying Hand and Finger Kinematics and their Neural Mechanisms

Castellanos, Lucia 01 August 2013 (has links)
The primate hand, a biomechanical structure with over twenty kinematic degrees of freedom, has an elaborate anatomical architecture. Although the hand requires complex, coordinated neural control, it endows its owner with an astonishing range of dexterous finger movements. Despite a century of research, however, the neural mechanisms that enable finger and grasping movements in primates are largely unknown. In this thesis, we investigate statistical models of finger movement that can provide insights into the mechanics of the hand, and that can have applications in neural-motor prostheses, enabling people with limb loss to regain natural function of the hands. There are many challenges associated with (1) the understanding and modeling of the kinematics of fingers, and (2) the mapping of intracortical neural recordings into motor commands that can be used to control a Brain-Machine Interface. These challenges include: potential nonlinearities; confounded sources of variation in experimental datasets; and dealing with high degrees of kinematic freedom. In this work we analyze kinematic and neural datasets from repeated-trial experiments of hand motion, with the following contributions: We identified static, nonlinear, low-dimensional representations of grasping finger motion, with accompanying evidence that these nonlinear representations are better than linear representations at predicting the type of object being grasped over the course of a reach-to-grasp movement. In addition, we show evidence of better encoding of these nonlinear (versus linear) representations in the firing of some neurons collected from the primary motor cortex of rhesus monkeys. A functional alignment of grasping trajectories, based on total kinetic energy, as a strategy to account for temporal variation and to exploit a repeated-trial experiment structure. An interpretable model for extracting dynamic synergies of finger motion, based on Gaussian Processes, that decomposes and reduces the dimensionality of variance in the dataset. We derive efficient algorithms for parameter estimation, show accurate reconstruction of grasping trajectories, and illustrate the interpretation of the model parameters. Sound evidence of single-neuron decoding of interpretable grasping events, plus insights about the amount of grasping information extractable from just a single neuron. The Laplace Gaussian Filter (LGF), a deterministic approximation to the posterior mean that is more accurate than Monte Carlo approximations for the same computational cost, and that in an off-line decoding task is more accurate than the standard Population Vector Algorithm.
2

Gaussovské filtry s rotujícím jádrem / Gaussian filters with rotating kernel

Vintr, Tomáš January 2010 (has links)
The objective of this thesis is to create Gaussian 1D filters with rotating kernel theory which enables to program algorithm for noise reduction and beam structure highlighting in a digital picture of the solar corona. A fragment of original picture of solar corona and of pictures filtred by this algorithm is in the enclosure.
3

Gaussovské filtry s rotujícím jádrem / Gaussian filters with rotating kernel

Vintr, Tomáš January 2010 (has links)
The objective of this thesis is to create Gaussian 1D filters with rotating kernel theory which enables to program algorithm for noise reduction and beam structure highlighting in a digital picture of the solar corona.
4

Detekce pohybujících se objektů ve video sekvenci / Moving Objects Detection in Video Sequences

Havelka, Jan January 2011 (has links)
The topic of this thesis is the recognition and detection of moving object and persons in video sequence and in the static image. Designed application uses the combination of background model for movement detection, histograms of oriented gradients method for person recognition and Lucas-Kanade method for object tracking.
5

Detekce šířky papilární linie u otisku prstu / Detection of Papillary Line Width by Fingerprints

Homola, Antonín January 2011 (has links)
This work outlines a method of detection of the papillary line width in fingerprints. This method is one of the possible methods of liveness detection. The first part of the work with deals defining of the fingerprint, attacks on today's systems and possibilities to improve security. The next section detection describes of the papillary line width. During the process of resolving, the first thing to do was to start operation of the scanning device and to read the database for tests and experiments. An independent application was created on this purpose. Further, there were projected methods for detection and measuring of the papillary line width. Use of the Canny edge detector with the Sobel operator and the Gaussian filter proved the best. Then, there is described implementation of individual methods. The next part of the work describes and assesses the results of the tests. The last chapter summarizes the work and proposes further possibilities of development.
6

Self-Organizing Neural Visual Models to Learn Feature Detectors and Motion Tracking Behaviour by Exposure to Real-World Data

Yogeswaran, Arjun January 2018 (has links)
Advances in unsupervised learning and deep neural networks have led to increased performance in a number of domains, and to the ability to draw strong comparisons between the biological method of self-organization conducted by the brain and computational mechanisms. This thesis aims to use real-world data to tackle two areas in the domain of computer vision which have biological equivalents: feature detection and motion tracking. The aforementioned advances have allowed efficient learning of feature representations directly from large sets of unlabeled data instead of using traditional handcrafted features. The first part of this thesis evaluates such representations by comparing regularization and preprocessing methods which incorporate local neighbouring information during training on a single-layer neural network. The networks are trained and tested on the Hollywood2 video dataset, as well as the static CIFAR-10, STL-10, COIL-100, and MNIST image datasets. The induction of topography or simple image blurring via Gaussian filters during training produces better discriminative features as evidenced by the consistent and notable increase in classification results that they produce. In the visual domain, invariant features are desirable such that objects can be classified despite transformations. It is found that most of the compared methods produce more invariant features, however, classification accuracy does not correlate to invariance. The second, and paramount, contribution of this thesis is a biologically-inspired model to explain the emergence of motion tracking behaviour in early development using unsupervised learning. The model’s self-organization is biased by an original concept called retinal constancy, which measures how similar visual contents are between successive frames. In the proposed two-layer deep network, when exposed to real-world video, the first layer learns to encode visual motion, and the second layer learns to relate that motion to gaze movements, which it perceives and creates through bi-directional nodes. This is unique because it uses general machine learning algorithms, and their inherent generative properties, to learn from real-world data. It also implements a biological theory and learns in a fully unsupervised manner. An analysis of its parameters and limitations is conducted, and its tracking performance is evaluated. Results show that this model is able to successfully follow targets in real-world video, despite being trained without supervision on real-world video.
7

Segmentace obrazu pomocí neuronové sítě / Neural Network Based Image Segmentation

Jamborová, Soňa January 2011 (has links)
This work is about suggestion of the software for neural network based image segmentation. It defines basic terms for this topics. It is focusing mainly at preperation imaging information for image segmentation using neural network. It describes and compares different aproaches for image segmentation.
8

Detekce hran pomocí neuronové sítě / Neural Network Based Edge Detection

Janda, Miloš January 2010 (has links)
Aim of this thesis is description of neural network based edge detection methods that are substitute for classic methods of detection using edge operators. First chapters generally discussed the issues of image processing, edge detection and neural networks. The objective of the main part is to show process of generating synthetic images, extracting training datasets and discussing variants of suitable topologies of neural networks for purpose of edge detection. The last part of the thesis is dedicated to evaluating and measuring accuracy values of neural network.

Page generated in 0.0639 seconds