• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 11
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 222
  • 222
  • 50
  • 41
  • 39
  • 36
  • 31
  • 29
  • 29
  • 27
  • 26
  • 26
  • 25
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Recovering shape and determining attitude from extended gaussian images

Little, James Joseph January 1985 (has links)
This dissertation is concerned with surface representations which record surface properties as a function of surface orientation. The Extended Gaussian Image (EGI) of an object records the variation of surface area with surface orientation. When the object is polyhedral, the EGI takes the form of a set of vectors, one for each face, parallel to the outer surface normal of the face. The length of a vector is the area of the corresponding face. The EGI uniquely represents convex objects and is easily derived from conventional models of an object. An iterative algorithm is described which converts an EGI into an object model in terms of coordinates of vertices, edges, and faces. The algorithm converges to a solution by constrained optimization. There are two aspects to describing shape for polyhedral objects: first, the way in which faces intersect each other, termed the adjacency structure, and, second, the location of the faces in space. The latter may change without altering the former, but not vice versa. The algorithm for shape recovery determines both elements of shape. The continuous support function is described in terms of the area function for curves, permitting a qualitative comparison of the smoothness of the two functions. The next Section describes a method of curve segmentation based on extrema of the support function. Because the support function varies with translation, its behaviour under translation is studied, leading to proposals for several candidate centres of support. The study of these ideas suggests some interesting problems in computational geometry. The EGI has been applied to determine object attitude, the rotation in 3-space bringing a sample object into correspondence with a prototype. The methods developed for the inversion problem can be applied to attitude determination. Experiments show attitude determination using the new method to be more robust than area matching methods. The method given here can be applied at lower resolution of orientation, so that it is possible to sample the space of attitudes more densely, leading to increased accuracy in attitude determination. The discussion finally is broadened to include non-convex objects, where surface orientation is not unique. The generalizations of the EGI do not support shape reconstruction for arbitrary non-convex objects. However, surfaces of revolution do allow a natural generalization of the EGI. The topological structure of regions of constant sign of curvature is invariant under Euclidean motion, and may be useful for recognition tasks. / Science, Faculty of / Computer Science, Department of / Graduate
12

The behaviour of Galois Gauss sums with respect to restriction of characters

Margolick, Michael William January 1978 (has links)
The theory of abelian and non-abelian L-functions is developed with a view to providing an understanding of the Langlands-Deligne local root number and local Galois Gauss sum. The relationship between the Galois Gauss sum of a character of a group and the Galois Gauss sum of the restriction of that character to a subgroup is examined. In particular a generalization of a theorem of Hasse-Davenport (1934) to the global, non-abelian case is seen to result from the relation between Galois Gauss sums and the adelic resolvents of Fröhlich. / Science, Faculty of / Mathematics, Department of / Unknown
13

Study of Gaussian processes, Lévy processes and infinitely divisible distributions

Veillette, Mark S. January 2011 (has links)
Thesis (Ph.D.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / In this thesis, we study distribution functions and distributional-related quantities for various stochastic processes and probability distributions, including Gaussian processes, inverse Levy subordinators, Poisson stochastic integrals, non-negative infinitely divisible distributions and the Rosenblatt distribution. We obtain analytical results for each case, and in instances where no closed form exists for the distribution, we provide numerical solutions. We mainly use two methods to analyze such distributions. In some cases, we characterize distribution functions by viewing them as solutions to differential equations. These are used to obtain moments and distributions functions of the underlying random variables. In other cases, we obtain results using inversion of Laplace or Fourier transforms. These methods include the Post-Widder inversion formula for Laplace transforms, and Edgeworth approximations. In Chapter 1, we consider differential equations related to Gaussian processes. It is well known that the heat equation together with appropriate initial conditions characterize the marginal distribution of Brownian motion. We generalize this connection to finite dimensional distributions of arbitrary Gaussian processes. In Chapter 2, we study the inverses of Levy subordinators. These processes are non-Markovian and their finite-dimensional distributions are not known in closed form. We derive a differential equation related to these processes and use it to find an expression for joint moments. We compute numerically these joint moments in Chapter 3 and include several examples. Chapter 4 considers Poisson stochastic integrals. We show that the distribution function of these random variables satisfies a Kolmogorov-Feller equation, and we describe the regularity of solutions and numerically solve this equation. Chapter 5 presents a technique for computing the density function or distribution function of any non-negative infinitely divisible distribution based on the Post-Widder method. In Chapter 6, we consider a distribution given by an infinite sum of weighted gamma distributions. We derive the Levy-Khintchine representation and show when the tail of this sum is asymptotically normal. We derive a Berry-Essen bound and Edgeworth expansions for its distribution function. Finally, in Chapter 7 we look at the Rosenblatt distribution, which can be expressed as a infinite sum of weighted chi-squared distributions. We apply the expansions in Chapter 6 to compute its distribution function. / 2031-01-01
14

Effective implementation of Gaussian process regression for machine learning

Davies, Alexander James January 2015 (has links)
No description available.
15

Deblurring Gaussian blur : continuous and discrete approaches

Kimia, Behjoo. January 1986 (has links)
No description available.
16

Indirect adaptive control with quadratic cost functions

Salcudean, Septimiu. January 1981 (has links)
No description available.
17

Reliability in constrained Gauss-Markov models an analytical and differential approach with applications in photogrammetry /

Cothren, Jackson D. January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains xii, 119 p.; also includes graphics (some col.). Includes bibliographical references (p. 106-109). Available online via OhioLINK's ETD Center
18

Iterative reconstruction methods of CT images using a statistical framework /

Delgado, Diana (Diana Carolina) January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2011. / Printout. Includes bibliographical references (leaves 57-59). Also available on the World Wide Web.
19

On the Construction of Minimax Optimal Nonparametric Tests with Kernel Embedding Methods

Li, Tong January 2021 (has links)
Kernel embedding methods have witnessed a great deal of practical success in the area of nonparametric hypothesis testing in recent years. But ever since its first proposal, there exists an inevitable problem that researchers in this area have been trying to answer--what kernel should be selected, because the performance of the associated nonparametric tests can vary dramatically with different kernels. While the way of kernel selection is usually ad hoc, we wonder if there exists a principled way of kernel selection so as to ensure that the associated nonparametric tests have good performance. As consistency results against fixed alternatives do not tell the full story about the power of the associated tests, we study their statistical performance within the minimax framework. First, focusing on the case of goodness-of-fit tests, our analyses show that a vanilla version of the kernel embedding based test could be suboptimal, and suggest a simple remedy by moderating the kernel. We prove that the moderated approach provides optimal tests for a wide range of deviations from the null and can also be made adaptive over a large collection of interpolation spaces. Then, we study the asymptotic properties of goodness-of-fit, homogeneity and independence tests using Gaussian kernels, arguably the most popular and successful among such tests. Our results provide theoretical justifications for this common practice by showing that tests using a Gaussian kernel with an appropriately chosen scaling parameter are minimax optimal against smooth alternatives in all three settings. In addition, our analysis also pinpoints the importance of choosing a diverging scaling parameter when using Gaussian kernels and suggests a data-driven choice of the scaling parameter that yields tests optimal, up to an iterated logarithmic factor, over a wide range of smooth alternatives. Numerical experiments are presented to further demonstrate the practical merits of our methodology.
20

Indirect adaptive control with quadratic cost functions

Salcudean, Septimiu. January 1981 (has links)
No description available.

Page generated in 0.0907 seconds