Spelling suggestions: "subject:"caz dde synthèse"" "subject:"caz dee synthèse""
1 |
Transformation du gaz de synthèse en méthanol en présence de catalyseurs oxyde mixte à base de cuivre, aluminium et de zinc /Le Peltier, Fabienne. January 1900 (has links)
Th. univ.--Sci. pétrolières--Paris 6, 1989. / Diplôme délivré en association avec l'Ecole nationale supérieure du pétrole et des moteurs. Bibliogr. p. 331-344. 1992 d'après la déclaration de dépôt légal.
|
2 |
Conversion catalytique du méthane en gaz de synthèse par oxydation partielleFleys, Matthieu Marquaire, Paul-Marie January 2006 (has links) (PDF)
Thèse de doctorat : Génie des procédés : Vandoeuvre-les-Nancy, INPL : 2006. / Titre provenant de l'écran-titre. Bibliogr.
|
3 |
Production de gaz de synthèse par interactions à haute température du gaz, des goudrons et du résidu carboné issus de la pyrolyse de biomassesNozahic, Françoise Truong-Meyer, Xuân-Mi Joulia, Xavier January 2008 (has links)
Reproduction de : Thèse de doctorat : Génie des procédés et de l'environnement : Toulouse, INPT : 2008. / Titre provenant de l'écran-titre. Bibliogr. 119 réf.
|
4 |
Biomethanation of syngas: identification of metabolic pathways from CO in a natural anaerobic consortiumSancho Navarro, Silvia 06 1900 (has links)
Au cours des dernières décennies, l’intérêt pour la gazéification de biomasses a considérablement augmenté, notamment en raison de la grande efficacité de recouvrement énergétique de ce procédé par rapport aux autres procédés de génération de bioénergies. Les composants majoritaires du gaz de synthèse, le monoxyde de carbone (CO) et l’hydrogène (H2) peuvent entre autres servir de substrats à divers microorganismes qui peuvent produire une variété de molécules chimiques d’intérêts, ou encore produire des biocarburants, particulièrement le méthane. Il est donc important d'étudier les consortiums méthanogènes naturels qui, en syntrophie, serait en mesure de convertir le gaz de synthèse en carburants utiles.
Cette étude évalue principalement le potentiel de méthanisation du CO par un consortium microbien issu d’un réacteur de type UASB, ainsi que les voies métaboliques impliquées dans cette conversion en conditions mésophiles. Des tests d’activité ont donc été réalisés avec la boue anaérobie du réacteur sous différentes pressions partielles de CO variant de 0.1 à 1,65 atm (0.09 à 1.31 mmol CO/L), en présence ou absence de certains inhibiteurs métaboliques spécifiques. Dès le départ, la boue non acclimatée au CO présente une activité carboxidotrophique relativement intéressante et permet une croissance sur le CO. Les tests effectués avec de l’acide 2- bromoethanesulfonique (BES) ou avec de la vancomycine démontrent que le CO est majoritairement consommé par les bactéries acétogènes avant d’être converti en méthane par les méthanogènes acétotrophes. De plus, un plus grand potentiel de méthanisation a pu être atteint sous une atmosphère constituée uniquement de CO en acclimatant auparavant la boue. Cette adaptation est caractérisée par un changement dans la population microbienne désormais dominée par les méthanogènes hydrogénotrophes. Ceci suggère un potentiel de production à large échelle de biométhane à partir du gaz de synthèse avec l’aide de biofilms anaérobies. / Syngas produced through the thermal gasification of biomass for energy recovery has received increased attention in the past decades due to its higher efficiency compared to other bioenergy processes. The gas components of syngas, CO and H2, can serve as substrates for the conversion of desirable chemicals and fuels, namely methane, by a wide range of microorganisms. Meanwhile, anaerobic wastewater-treating sludges have been reported as good sources of carboxidotrophic microorganisms which can be exploited for methane production. Thus it is important to investigate existing methanogenic consortiums which, in syntrophy, are able to convert syngas into useful fuels.
This study is mainly focused on the assessment of the carboxidotrophic methanogenic potential present in a natural consortium of microorganisms from a UASB reactor and the identification of CO conversion routes to methane under mesophilic temperatures. To achieve this, a series of kinetic-activity tests with the anaerobic sludge were performed under CO partial pressures varying from 0.1 to 1.65 atm (0.09-1.31 mmol/L) in both the presence and absence of specific metabolic inhibitors. The non-adapted sludge presented an interesting carboxidotrophic activity potential for growing conditions on CO alone. Inhibition experiments with 2- bromoethanesulfonic acid (BES) and vancomycin showed that CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens. Moreover, it was possible to achieve higher methanogenic potential under 100% CO by acclimation of the sludge. This adaptation led to a shift in the microbial population predominated by hydrogenophilic methanogens. This suggests a possible enrichment potential with anaerobic biofilms for large scale methane production from CO-rich syngas, and further advances the knowledge base for anaerobic reactor development.
|
5 |
Biomethanation of syngas: identification of metabolic pathways from CO in a natural anaerobic consortiumSancho Navarro, Silvia 06 1900 (has links)
Au cours des dernières décennies, l’intérêt pour la gazéification de biomasses a considérablement augmenté, notamment en raison de la grande efficacité de recouvrement énergétique de ce procédé par rapport aux autres procédés de génération de bioénergies. Les composants majoritaires du gaz de synthèse, le monoxyde de carbone (CO) et l’hydrogène (H2) peuvent entre autres servir de substrats à divers microorganismes qui peuvent produire une variété de molécules chimiques d’intérêts, ou encore produire des biocarburants, particulièrement le méthane. Il est donc important d'étudier les consortiums méthanogènes naturels qui, en syntrophie, serait en mesure de convertir le gaz de synthèse en carburants utiles.
Cette étude évalue principalement le potentiel de méthanisation du CO par un consortium microbien issu d’un réacteur de type UASB, ainsi que les voies métaboliques impliquées dans cette conversion en conditions mésophiles. Des tests d’activité ont donc été réalisés avec la boue anaérobie du réacteur sous différentes pressions partielles de CO variant de 0.1 à 1,65 atm (0.09 à 1.31 mmol CO/L), en présence ou absence de certains inhibiteurs métaboliques spécifiques. Dès le départ, la boue non acclimatée au CO présente une activité carboxidotrophique relativement intéressante et permet une croissance sur le CO. Les tests effectués avec de l’acide 2- bromoethanesulfonique (BES) ou avec de la vancomycine démontrent que le CO est majoritairement consommé par les bactéries acétogènes avant d’être converti en méthane par les méthanogènes acétotrophes. De plus, un plus grand potentiel de méthanisation a pu être atteint sous une atmosphère constituée uniquement de CO en acclimatant auparavant la boue. Cette adaptation est caractérisée par un changement dans la population microbienne désormais dominée par les méthanogènes hydrogénotrophes. Ceci suggère un potentiel de production à large échelle de biométhane à partir du gaz de synthèse avec l’aide de biofilms anaérobies. / Syngas produced through the thermal gasification of biomass for energy recovery has received increased attention in the past decades due to its higher efficiency compared to other bioenergy processes. The gas components of syngas, CO and H2, can serve as substrates for the conversion of desirable chemicals and fuels, namely methane, by a wide range of microorganisms. Meanwhile, anaerobic wastewater-treating sludges have been reported as good sources of carboxidotrophic microorganisms which can be exploited for methane production. Thus it is important to investigate existing methanogenic consortiums which, in syntrophy, are able to convert syngas into useful fuels.
This study is mainly focused on the assessment of the carboxidotrophic methanogenic potential present in a natural consortium of microorganisms from a UASB reactor and the identification of CO conversion routes to methane under mesophilic temperatures. To achieve this, a series of kinetic-activity tests with the anaerobic sludge were performed under CO partial pressures varying from 0.1 to 1.65 atm (0.09-1.31 mmol/L) in both the presence and absence of specific metabolic inhibitors. The non-adapted sludge presented an interesting carboxidotrophic activity potential for growing conditions on CO alone. Inhibition experiments with 2- bromoethanesulfonic acid (BES) and vancomycin showed that CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens. Moreover, it was possible to achieve higher methanogenic potential under 100% CO by acclimation of the sludge. This adaptation led to a shift in the microbial population predominated by hydrogenophilic methanogens. This suggests a possible enrichment potential with anaerobic biofilms for large scale methane production from CO-rich syngas, and further advances the knowledge base for anaerobic reactor development.
|
Page generated in 0.0835 seconds