Spelling suggestions: "subject:"gearbox"" "subject:"shearbox""
31 |
Development of a low-cost vibration protection device for industrial gearboxesKroch, Rudolph C. January 2014 (has links)
A market for a low-cost vibration protection device in the rotating machine industry has been identified that satisfies the needs of small firms unable to afford and sustain a condition monitoring operation.
In this project, a system is developed that satisfies the need for a low-cost, conservative, configurable and intuitive device that can perform vibration measurements on a range of gearboxes and make an inference as to the level of vibrations coming from the bearings on the shafts.
The inference made by the device, derived from the frequency content of the measured signal, may be used by the operator of the gearbox to make a judgment of whether to have the gearbox investigated by a competent authority. In order to assist this investigation, a vibration history of the device is stored, both in time and frequency domain formats, as well as a full history of the relevant diagnostic information.
To reach this point of maturity, the project evolved through three different hardware configurations. The various iterations were tested within the scope for which they were designed and the lessons learned after each test was incorporated into the next iteration. The final iteration incorporated all the refinements of the system up to that point as well as the anticipated scope of further development into the commercial realm.
To verify the inference credibility of the device, the results of the final specification of the device was evaluated against data obtained from the condition monitoring department of SASOL in Secunda. The results were analysed on two accounts. Firstly the signal reproduction accuracy was evaluated, which established how accurately the signal was digitized and how the processing algorithms performed. Secondly, the inference accuracy was gauged against the practices of SASOL. On both accounts, the final device performed satisfactorily.
The end result of this project is considered a ‘near-commercial ready’ prototype with all the hardware on-board for user interaction, signal processing, 3rd party viewing of the data and future expandability. / Dissertation (MEng)--University of Pretoria, 2014. / tm2015 / Mechanical and Aeronautical Engineering / MEng / Unrestricted
|
32 |
Development of an Ab/Adduction Power Unit for a Lower Extremity ExoskeletonJelley, Samuel Flaherty 23 May 2022 (has links)
No description available.
|
33 |
A High Fidelity Finite Element and Contact Analysis Investigation of Stresses and Motions of a Wind Turbine GearboxThaler, Aaron Paul 06 September 2011 (has links)
No description available.
|
34 |
Design of a Proprioceptive Actuator Utilizing a Cycloidal GearboxKimball, Craig John 01 June 2022 (has links) (PDF)
Legged robotics creates the demand for high torque compact actuators able to develop high instantaneous torque. Proprioceptive actuator design theory is a design theory that removes the need for a torque feedback device and relies on the stiffness in the leg for absorbing the high Ground Impact Forces created by walking locomotion. It utilizes a high torque density motor paired with a gearbox with a high gear ratio for torque multiplication. Previously work has been done to design a proprioceptive actuator design that utilizes a planetary gearbox to create a modular low-cost actuator for legged robotics. The purpose of this thesis is to design and analyze a proprioceptive actuator that utilizes a cycloidal gearbox design to test the feasibility of the gearbox design and look at the advantages it might bring over a planetary gearbox design. A cycloidal gearbox utilizes eccentric motion of cycloidal disks, made of epicycloids, to create a high gear ratio in a very limited space without having to rely on expensive gears for torque multiplication purposes. A prototype low-cost actuator was developed using a 2-disk cycloidal gearbox in its design. It was tested for wear life and torque control and was able to meet the torque and operation requirements of the Cal Poly legged robotics project. The design was also optimized to be made using low-cost additive manufacturing techniques rather than relying on conventional machining.
|
35 |
Experiment and Simulation of the Acoustic Signature of Fatigued-Cracked Gears in a Two-Stage GearboxOstiguy, Matthew James 01 December 2014 (has links)
This thesis focuses on the development of a health monitoring system for gearbox transmissions. This was accomplished by developing and understanding a two-stage gearbox computer model that emulates an actual gearbox test rig. The computer model contains actual gearbox geometry, flexible shafts, bearings, gear contact forces, input motor torque, output brake torque, and realistic gearbox imbalance. The gear contact force of each gear stage and the input bearing translational acceleration were the main outputs compared between a healthy gearbox and damaged gearbox computer model. The damage of focus was a fatigue crack on the input pinion gear. A sideband energy ratio comparison yielded the computer simulation accurately modeled the difference between a healthy and damaged gearbox. The next step in this study involved the development of a repeatable procedure to initiate and propagate a fatigue crack at the tooth root in an actual spur gear. A damaged spur gear allows for a future comparison of an actual healthy and damaged gearbox system in the lab. A custom fatigue fixture was designed and manufactured for a Martin S1224BS 1 spur gear. The fatigue crack was initiated by position control fatigue testing which deflects the gear tooth a set amplitude for a number of cycles. Over the length of the test, the load that the tooth can withstand in bending decreases as damage begins to occur. Once the max load on the gear has dropped by a significant percentage (5-15%) a crack has initiated and begun to propagate across the tooth face. The use of a scanning electron microscope confirmed the presence a fatigue crack.
|
36 |
Modélisation d'un palier hydrodynamique de réducteur épicycloïdal opérant en conditions sévères / Modeling of a planetary gearbox hydrodynamic journal bearing under severe operating conditionsPap, Bałint 29 May 2018 (has links)
De nombreux projets visant à réduire l’impact environnemental global des avions sont lancés au niveau européen. L’un des moteurs étudié pour les avions moyens et longs courriers est le moteur Ultra High Bypass Ratio (UHBR) : un moteur simple corps, double flux, à flux externe fortement augmenté. Le moteur UHBR doit être équipé d’un réducteur épicycloïdal, qui est un composant jamais utilisé dans un turboréacteur jusqu’à présent. L’optimisation d’un réducteur épicycloïdal a conduit à l’utilisation de paliers hydrodynamiques pour supporter les pignons satellites du porte-satellites.Pour une telle application, le palier hydrodynamique subit une déformation très élevée due aux charges de l’engrènement sur le pignon satellite et à l’effet centrifuge engendré par la rotation du porte-satellites. La géométrie optimisée des composants du palier varie avec le comportement thermique et mécanique des pièces, nécessitant la prise en compte d’une modélisation thermoélastohydrodynamique (TEHD).Afin de modéliser précisément ces phénomènes, un modèle conservatif dans la zone inactive en régime TEHD a été développé et validé à l’aide des résultats d’essais de la littérature et des bancs d’essais de Safran Transmission Systems. Les résultats obtenus montrent un double champ de pression dans le palier hydrodynamique du réducteur épicycloïdal, engendré par la forte déformation élastique du pignon agissant ainsi de façon significative sur le comportement dynamique du palier. De plus, l’influence de l’effet centrifuge sur l’huile dans le palier a été également examinée. / Several projects aimed at reducing the overall environmental impact of aircrafts are launched at European level. One of the engines studied for medium and long-haul aircraft is the Ultra High Bypass Ratio (UHBR) engine: a single-body, dual-flow gas turbine, with a greatly increased external flow rate. The UHBR engine must be equipped with an epicyclic reduction gearbox, which is a component never used before in a turbofan engine. The optimization of an epicyclic gearbox has resulted to the use of hydrodynamic bearings for supporting the satellite gears on the planet carrier.The hydrodynamic bearing of such application undergoes high deformations due to the gear contact loads on the satellite gear and to the centrifugal effect generated by the rotation of the planet carrier. The optimized geometry of the bearing components is influenced by the thermal and mechanical behavior of the bearing components, which requires a thermoelastohydrodynamic (TEHD) modeling taking into account the real film thickness under operation.In order to precisely simulate these phenomena, a conservative modeling in the inactive zone, under a TEHD regime has been developed and validated by comparing the predictions to the test results of the literature and of the test benches of Safran Transmission Systems. The results obtained show a double pressure field in the hydrodynamic bearing of the epicyclic reduction gearbox, due to the strongly deformed film thickness, which greatly affect the dynamic behavior of the bearing. In addition, the influence of the centrifugal force on the oil pressure in the oil film was also examined.
|
37 |
CFD simulation of dip-lubricated single-stage gearboxes through coupling of multiphase flow and multiple body dynamics : an initial investigationImtiaz, Nasir January 2018 (has links)
Transmissions are an essential part of a vehicle powertrain. An optimally designed powertrain can result in energy savings, reduced environmental impact and increased comfort and reliability. Along with other components of the powertrain, efficiency is also a major concern in the design of transmissions. The churning power losses associated with the motion of gears through the oil represent a significant portion of the total power losses in a transmission and therefore need to be estimated. A lack of reliable empirical models for the prediction of these losses has led to the emergence of CFD (Computational Fluid Dynamics) as a means to (i) predict these losses and (ii) promote a deeper understanding of the physical phenomena responsible for theselosses in order to improve existing models. The commercial CFD solver STAR-CCM+ is used to investigate the oil distribution and the churning power losses inside two gearbox configurations namely an FZG (Technical Institute for the Study of Gears and Drive Mechanisms) gearbox and a planetary gearbox. A comparison of two motion handling techniques in STARCCM+ namely MRF (Moving Reference Frame) and RBM (Rigid Body Motion) models is made in terms of the accuracy of results and the computational requirements using the FZG gearbox. A sensitivity analysis on how the size of gap between the meshing gear teeth affects the flow and the computational requirements is also done using the FZG gearbox. Different modelling alternatives are investigated for the planetary gearbox and the best choices have been determined. The numerical simulations are solved in an unsteady framework where the VOF (Volume Of Fluid) multiphase model is used to track the interface between the immiscible phases. The overset meshing technique has been used to reconfigure the mesh at each time step. The results from the CFD simulations are presented and discussed in terms of the modelling choices made and their effect on the accuracy of the results. The MRF method is a cheaper alternative compared to the RBM model however, the former model does not accurately simulate the transient start-up and instead provides just a regime solution of the unsteady problem. As expected, the accuracy of the results suffers from having a large gap between the meshing gear teeth. The use of compressible ideal gas model for the air phase with a pressure boundary condition gives the optimum performance for the planetary gearbox. The outcomes can be used toeffectively study transmission flows using CFD and thereby improve the design of future transmissions for improved efficiency.
|
38 |
Konstrukční návrh sekvenčního řazení vozidla / Design of Vehicle Sequential GearboxŠardický, Jakub January 2018 (has links)
The thesis deals with the search of the current sequential gearboxes and the structural shift of the Škoda Felicia 1.6 MPI synchronous transmission to the manual sequential gearbox. Based on the assignment, the schematic reconstruction principle is included. This principle i s then elaborated into a detailed design and the thesis focuses on strength analysis of newly created parts of reconstruction, optimization of these parts and control of their fatigue life. The thesis ends with the theoretical continuation of mechanical conversion to a fully electronic sequential gearbox.
|
39 |
Příprava výukové úlohy na experimentálním zařízení pro měření účinnosti ozubených převodů / Realization of Educational Problem on Experimental Apparatus for Measurement of Gear EfficiencyRunštuk, Jiří January 2013 (has links)
This diploma thesis is focused on the implementation of the educational role of the experimental station for measuring the effectiveness of gears. The proposed laboratory task "Experimental measurement of the effectiveness of gears" is intended to familiarize students with the basic principles of gears and especially highlight the issue of the effectiveness of gears. In this presented thesis, it is also suggested the possibility of expanding the educational use of the experimental station. This extension deals with vibration diagnostics of frequencies of gears.
|
40 |
Thermal modelling of a truck gearboxHäggström, Martin January 2017 (has links)
The thermal regime of a gearbox is of considerable importance to its performance. Several significant gearbox parameters, such as the efficiency and fatigue life of its components, are temperature dependent. It is thus important to be able to determine the temperatures of the gearbox components during operation, but they are difficult to measure experimentally. A simulation model capable of predicting these temperatures would therefore be a valuable tool. The objective of this master’s thesis was to create a model capable of simulating the thermal regime of a truck gearbox during operation. To do this, mechanical losses in the gearbox, heat exchange with the surroundings, as well as heat transfer between components had to be accounted for. The model was created using the 1D simulation software LMS Imagine.Lab Amesim 14.0, and is based on a combination of mechanical and thermal networks. Details of the mechanical and thermal interactions between components are calculated using empirical and analytical formulas for mechanical losses and heat transfer. The result of the thesis is a model which can be used to simulate either real or idealised load cases, from which temperatures of gear wheels, shafts, bearings, housing and gearbox oil may be studied, as well as gearbox losses and heat transfer. Comparisons between simulated and measured gearbox efficiencies show good correlation. It is also shown that the model can predict oil temperatures which agree with in-vehicle measurements. Due to a lack of measurement data, most simulated component temperatures cannot be compared to measured values. However, temperature measurements performed for one of the gear wheels indicate that the model can be used to predict their temperature. In order to demonstrate the capabilities of the model, example results from both real and idealised load cases are presented.
|
Page generated in 0.0225 seconds