• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análisis genético y funcional de la frataxina y otras proteínas mitocrondriales relacionadas con ataxias cerebelosas.

González Cabo, María Pilar 08 November 2005 (has links)
El déficit de frataxina es la causa principal de la ataxia de Friedreich, una enfermedad hereditaria neurodegenerativa que afecta a las neuronas sensitivas del ganglio dorsal y del tracto espinocerebelar. Desde que se describi¨® el gen responsable de la enfermedad y sobre todo gracias a la generaci¨®n de organismos modelos para su estudio, se han postulado diferentes funciones para la frataxina: homeostasis del hierro mitocondrial, almacenamiento del hierro, respuesta al estr¨¦s oxidativo. Biog¨¦nesis de los clusters Fe-S, modulaci¨®n en la actividad de la aconitasa mitocondrial y un papel en la fosforilaci¨®n oxidativa. Nuestro planteamiento ha sido que la frataxina realiza su funci¨®n en la mitocondria mediante la interacci¨®n con otras prote¨ªnas y es posible que participe en diferentes procesos biol¨®gicos mitocondriales interactuando con distintas prote¨ªnas en cada uno de ellos. Por lo tanto, el objetivo del trabajo de tesis era la identificaci¨®n de prote¨ªnas capaces de interaccionar con Yfh1p, la frataxina de Sacchararomyces cerevisiae. En este trabajo mostramos que Yfh1p interacciona f¨ªsicamente con proteinas de la cadena de transporte de electrones mitocondrial. Hemos demostrado que Yfh1p coinmunoprecipita con succinato deshidrogenasa, concretamente con las subunidades Sdh1p y Sdh2p, de la cadena de transporte electr¨®nico mitocondrial de levadura, y tambi¨¦n con las subunidades ETFa y ETFb de la flavoprote¨ªna transferidora de electrones. Con el fin de confirmar la relaci¨®n funcional entre YFH1 y los genes SDH estudiamos si ambos genes manifestaban interacci¨®n sint¨¦tica. Nuestros resultados permiten afirmar que existe una relaci¨®n funcional entre el gen YFH1 y los genes de succinato deshidrogenasa SDH1 y SDH2, y seguramente su relaci¨®n sea a nivel de la misma ruta bioqu¨ªmica. Tambi¨¦n hemos demostrado una interacci¨®n f¨ªsica entre la frataxina humana y las subunidades SDHA y SDHB de la succinato deshidrogenasa humana. De estos hallazgos se infiere que la capacidad de interaccionar de frataxina con el complejo II de la cadena de transporte electr¨®nico est¨¢ conservada en humanos, sugiriendo que la frataxina tiene un papel en la cadena de transporte electr¨®nico mitocondrial en humanos. Nosotros planteamos que la frataxina puede intervenir en la entrada de electrones a la cadena de transporte electr¨®nico. Por lo tanto, proponemos una participaci¨®n directa de la cadena respiratoria en la patog¨¦nesis de la ataxia de Friedreich, la cual entendemos que se puede considerar como una enfermedad de la fosforilaci¨®n oxidativa (OXPHOS).Desde el descubrimiento de la frataxina y su localizaci¨®n como mol¨¦cula de la matriz mitocondrial, la ataxia de Friedreich se ha convertido en el prototipo de enfermedad mitocondrial causada por un gen nuclear. No obstante, no es la ¨²nica ataxia que se puede considerar como mitocondrial. Otro ejemplo es la anemia siderobl¨¢stica ligada al X asociada con ataxia cerebelosa (XLSA/A), causada por mutaciones en el gen del transportador mitocondrial ABC7. Esta enfermedad est¨¢ directamente relacionada con la homeostasis del hierro, al igual que la ataxia de Friedreich. Realizamos el aislamiento y caracterizaci¨®n del gen hom¨®logo del ABC7 en Caenorhabditis elegans y posteriormente la generaci¨®n de un knock-donw transitorio en C. elegans para el gen Y74C10AM.1 por RNAi. Los gusanos Y74C10AM.1(RNAi) presentan el siguiente fenotipo: letalidad embrionaria (Emb), retraso en el crecimiento (Gro), reducci¨®n en la puesta de huevos (Egl), defecaci¨®n alterada y aumento en la longevidad. Este fenotipo es similar a otros fenotipos asociados a mutantes transitorios de genes relacionados con la biog¨¦nesis de los clusters Fe-S en levadura. / Frataxin deficiency causes Friedreich ataxia, a neurodegenerative genetic disorder affecting sensory neurons of dorsal root ganglia and spinocerebellar tracts. Physiological function of frataxin in mitochondria has not been established yet, although several hypotheses have been postulated including mitochondrial iron homeostasis, iron storing, response to oxidative stress, iron-sulphur cluster biogenesis, modulation of mitochondrial aconitase activity and a role in oxidative phosphorylation. We showed that frataxin and its orthologue Saccharomyces cerevisiae, Yfh1p, interacts physically with proteins from the mitochondrial electron transfer chain. We demonstrated that Yfh1p co-immunoprecipitates with yeast succinate dehydrogenase complex subunits Sdh1p and Sdh2p, and with yeast orthologues of the electron transfer flavoprotein complex subunits ETFa and ETF¦Â. Genetic synthetic interaction experiments confirmed a functional relationship between YFH1 and succinate dehydrogenase genes SDH1 and SDH2. We postulate that Yfh1p might regulate the delivery of electrons via complex II and ETF systems towards ubiquinone in yeast. We also demonstrate a physical interaction between human frataxin and human succinate dehydrogenase complex subunits, suggesting also a key role of frataxin in the mitochondrial electron transport chain in humans. Consequently, we postulate a direct participation of the respiratory chain in the pathogenesis of the Friedreich ataxia, which we propose to be considered as an OXPHOS disease. Since the discovery of frataxin and its location within the mitocondrial matrix, Friedreich ataxia has become the prototype of mitocondrial disease caused by a nuclear gene. However, it is not the unique Mendelian ataxia that can be considered mitocondrial. Another example is the X-linked sideroblastic anemia with ataxia (XLSA/A), due to mutations in the gene encoding the mitocondrial transporter ABC7. This disease is directly related to the iron homeostasis, as Friedreich ataxia. We have characterized the genomic structure of Y74C10AM.1, the Caenorhabditis elegans ABC7 gene, and we have developed a transient knock-down model of C. elegans ABC7 deficiency by RNA interference. Y74C10AM.1(RNAi) worms show a phenotype that includes embryonic lethality (Emb), slow growth (Gro), egg laying defects (Egl), altered defecation and lifespan increase. This phenotype is similar to other phenotypes associated to transient knock-down models in C. elegans of genes related to the iron-sulphur cluster biogenesis in yeast.
2

N-Acetil-L-Glutamato quinasa de escherichia coli: Estructura tridimensional e implicaciones funcionales

Gil Ortiz, Fernando 04 July 2003 (has links)
Esta tesis versa sobre el estudio del enzima N-acetil-L-glutamato quinasa (NAGK), no regulado por arginina, de la enterobacteria Escherichia coli. Este enzima cataliza la transferencia del fosfato terminal del ATP al N-acetil-L-glutamato (NAG) en el segundo paso de la ruta de síntesis de arginina en microorganismos y plantas. En el desarrollo de esta tesis doctoral hemos clonado el gen que codifica para la NAGK de E. coli en un vector plasmídico adecuado, hemos sobreexpresado el enzima y lo hemos purificado en un grado muy elevado. Además, se ha conseguido cristalizar el enzima obteniendo varios complejos cristalinos tanto en su forma libre de sustratos como en presencia de varios ligandos, que incluyen sustratos y análogos de los sustratos. El empleo de técnicas de cristalografía de rayos X sobre los cristales obtenidos han permitido determinar las estructuras del complejo del enzima con MgAMPPNP y NAG a 1.5 Å de resolución y las de los complejos con MgADP y NAG con o sin tetrafluoruro de aluminio interpuesto, o de ADP y sulfato, todos ellos a una resolución de 1.9 Å. Todas las estructuras concuerdan en un mismo plegamiento básico, constituido por un homodímero nucleado por una hoja b molecular central de 16 elementos, rodeado de dos capas de hélices a, con bucles y dos hélices emergiendo del borde C-terminal de la hoja b central de cada subunidad, formando dichos bucles los sitios de unión de los sustratos. La estructura concuerda en su mayor parte con la descrita previamente por el laboratorio para la carbamato quinasa (CK), pudiendo constituir la NAGK el paradigma para los demás enzimas de la familia aminoácido quinasa. La presencia en la NAGK de NAG unido permite la caracterización por primera vez del sitio de unión del sustrato a fosforilar en estos enzimas. Además, los diferentes complejos han permitido dilucidar el modo de unión del nucleótido y establecer las bases de la especificidad para el mismo, de la catálisis, así como el curso del grupo fosforilo desde los sustratos a los productos. La comparación con la CK revela un mismo modo de unión de nucleótido a ambos enzimas. Los complejos con MgAMPPNP-NAG y con MgADP-tetrafluoruro de aluminio-NAG revelan que la transferencia de fosforilo sucede en un sólo paso, en línea, con carácter asociativo y con formación de un intermediario pentavalente bipiramidal. Las cargas positivas de dos lisinas conservadas, los extremos N-terminales de dos hélices a y la formación de una red de puentes de hidrógeno del fosfato que se transfiere con la proteína, son elementos catalíticos clave. Un aspartato conservado, tres moléculas fijas de agua y el catión metálico divalente parecen elementos adicionales clave en la organización del centro activo. El centro activo comprime los sustratos en la dirección del intermediario o estado de transición, proponiéndose que la complementariedad del enzima con dicho intermediario estabiliza este último y es un elemento catalítico clave con este enzima. Se propone también que el centro activo sufre fuertes cambios conformacionales con la unión de los sustratos, y que parte de la energía de dicha unión de los sustratos se utiliza para la generación de la conformación catalíticamente productiva.La presencia de una molécula de AMPPNP unida periféricamente al enzima, muy extendida, no acomplejada con Mg2+, nos informa acerca de la conformación que adopta el nucleótido en solución o en sus colisiones con moléculas de proteína. La hipótesis de que este nucleótido tenga importancia funcional para la reacción de la NAGK no parece apoyada por la ausencia del nucleótido periférico en los demás complejos. Por último, se han iniciado los estudios para la caracterización de las bases moleculares de la inhibición "feed-back" de la NAGK por arginina, mediante la cristalización de la NAGK de Pseudomonas aeruginosa, que a diferencia del enzima de E. coli, está sometida a este tipo de inhibición. / N-acetyl-L-glutamate kinase (NAGK) catalyzes the second step of microbial arginine biosynthesis. The gene for Escherichia coli NAGK was cloned and expressed in E. coli, allowing enzyme purification and crystallization with and without substrates. The E. coli NAGK crystal structure to 1.5 Å resolution reveals a 258-residue subunit homodimer nucleated by a central 16-stranded molecular open _-sheet sandwiched between _-helices. In each subunit MgAMPPNP binds along the sheet C-edge, and N-acetyl-L-glutamate (NAG) binds near the dyadic axis with its _-carboxilate aligned at short distance from the _-phosphoryl. The structural resemblance with carbamate kinase and sequence alignment suggest that NAGK is the prototype for the amino acid kinase family. Moreover, a large volume of unexplained electron density in this crystal is interpreted as an external, very extended, metal-free AMPPNP molecule that occupies two alternative positions and that makes contacts with the protein exclusively through its _-imidophosphate.We determine here also the crystal structures of NAGK complexes with MgADP and NAG alone or with the transition-state analog AlF4- and with ADP and sulphate. Comparison of these structures allows to delineate three successive steps during phosphoryl transfer. The transfer occurs in line and is strongly associative, with Lys8 and Lys217 stabilizing the transition state and the leaving group, respectively. Three water molecules play, together with Asp162 and the Mg, crucial structural roles. Two glycine-rich loops are also very important, moving in concert with the ligands. The active site is too narrow to accommodate the substrates without compressing the reacting groups, and this compressive strain appears a crucial component of the catalytic mechanism of NAGK. Initial binding of the two substrates would require a different enzyme conformation with a wider active site, and the energy of substrate binding would be used to change the active center conformation.In many species, NAGK is the pathway-controlling enzyme and is subject to feedback inhibition by arginine. The arginine-inhibitable NAGK from Pseudomonas aeruginosa has been cloned, overexpressed, purified and crystallized in presence of MgADP and NAG. Prismatic crystals diffract to 2.75 Å resolution with space group P1. Self-rotation function suggest the presence of 3-7 dimers in the unit cell.

Page generated in 0.1019 seconds