• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction and Optimization of Tetracycline-Responsive Gene Expression Systems

Roney, Ian James January 2016 (has links)
Conditional gene expression systems that enable inducible and reversible transcriptional control are essential research tools and have broad applications in biomedicine and biotechnology. The reverse tetracycline transcriptional activator is a canonical system for engineered gene expression control that enables graded and gratuitous modulation of target gene transcription in eukaryotes from yeast to human cell lines and transgenic animals. However, the system has a tendency to activate transcription even in the absence of tetracycline and this leaky target gene expression impedes its use. Here, we identify single amino acid substitutions that greatly enhance the dynamic range of the system by reducing leaky transcription to undetectable levels while retaining high expression capacity in the presence of inducer. Furthermore, we show that these improved DNA binding domains can be fused to repression domains to create synthetic transcriptional repressors. The function of these transcriptional repressors is dependent on the location of their recruitment and their mechanisms of action.
2

Investigating the role of a dynamic actin cytoskeleton and its regulators for HIV-1 entry in macrophages

Baskaran, Darshan January 2013 (has links)
Macrophages are one of the three main human cell types infected by HIV-1. They are highly plastic cells requiring a dynamic actin cytoskeleton for their role in development, homeostasis, tissue repair and immunity. For HIV-1, disrupting actin in macrophages is detrimental in that it leads to a complete block of viral uptake and reduces reverse transcription but, significantly, not fusion. Rho GTPases (Rac1, RhoA and Cdc42) regulate many aspects of actin dynamics including those required for endocytosis. Using a pharmacological approach, it was shown that Rac1 along with Rho GTPase effectors Pak1 and N-WASP are important for productive HIV-1 entry in macrophages. However, pharmacological inhibitors aren’t available for many host factors and may have off-target effects. To overcome this, expression of dominant negative (DN) Rho GTPases was attempted in human stem cell-derived macrophages (esMDMs). While DN Rac1 expressing esMDMs were successfully generated, this was not possible for the other two. DN Rac1 expressing esMDMs, as expected, had less filamentous actin and reduced dextran uptake compared to control esMDMs. In contrast to the pharmacological studies, HIV-1 infection studies in Rac1 DN esMDMs revealed a significant increase in HIV-1 fusion, reverse transcription and nuclear import, which could be due to reduced filamentous actin leading to a slower rate of endocytosis thereby allowing more time for viral fusion within endocytic vesicles. Surprisingly, reduced HIV-1 gene expression was observed in Rac1 DN esMDMs. This was corroborated by transfection studies implicating Rho GTPases in LTR driven gene expression. To overcome the ineffectiveness of RhoA and Cdc42 DN constitutive gene expression in esMDMs, an inducible lentiviral gene expression system based on the use of a constitutive promoter and a FLEx switch mediating irreversible DNA inversions was generated. The novel FLEx vector was the first system shown to induce transgene expression in esMDMs albeit at a very low efficiency.

Page generated in 0.066 seconds