• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase variation and expression of type 1 piliation in Escherichia coli : the role of integration host factor

Blomfield, Ian Charles January 1989 (has links)
No description available.
2

Growth, metabolism and product expression in E. coli containing dual origin plasmids in batch and continuous culture

Brown, Michael Edward January 1990 (has links)
Efficient expression of recombinant protein was achieved in E. coli through the use of vectors capable of copy number amplification. Expression was regulated by the tryptophan promoter and plasmid copy number by the temperature sensitive Lambda Pg promoter. Reproducible expression of a variety of recombinant proteins was achieved in defined medium under fermentation conditions. In all cases, cell growth was strongly inhibited after amplification of both plasmid DNA and product expression. Plasmid copy number control was studied in continuous culture. Below 36°G, plasmid DNA was maintained at a low and constant level. At 37°G and 38°C however, plasmid DNA amplification was activated. In order to study the effect of physiological parameters on expression from these plasmids, the CAT protein was chosen as a model. The effect of specific growth rate on copy number amplification was studied in batch and continuous culture. Prior to induction, higher growth rates increased CAT expression. After induction however, clear trends were difficult to determine although growth rate clearly influenced the lag period before DNA amplification occurred. In continuous culture, a combination of reduced growth rate and overgrowth by the plasmid free cells caused transient product formation. Therefore to conduct extended experiments under inducing conditions, two stage continuous culture was evaluated. Cells grown at 34°C were fed continuously to a second fermenter held at 38°C. Stable production was achieved over a 160 hour period - sufficient time to perform reproducible experiments. In these experiments, specific growth rate in the second stage was determined to be a significant factor influencing high level GAT expression. In addition, the efficiency by which it was both transcibed and translated from the plasmid DNA could be altered. The residence time in the second stage played a secondary role - mainly influencing the point at which plasmid-free cells could overgrow the culture. Trends in plasmid stability were also studied. The development of more sensitive methods to detect plasmid instability revealed the gradual accumulation of plasmid-free cells in these cultures. This was due to overgrowth of these plasmid-free cells rather than plasmid loss due to segregational deficiencies. Higher rates of overgrowth were observed at greater product expression levels.
3

Molecular characterization of fur and transcriptional profiling of fur- and iron- regulated gene expression in Listeria monocytogenes

Ledala, Nagender. Jayaswal, Radheshyam K. January 2007 (has links)
Thesis (Ph. D.)--Illinois State University, 2007. / Title from title page screen, viewed on July 16, 2008. Dissertation Committee: Radheshyam K. Jayaswal (chair), Brian J. Wilkinson, Anthony J. Otsuka, Wade A. Nichols, Laura A. Vogel. Includes bibliographical references and abstract. Also available in print.
4

Studies on translation initiation and gene expression in <i>Escherichia coli</i>

Gonzalez de Valdivia, Ernesto I. January 2006 (has links)
<p>In prokaryotes, several mRNA sequences surrounding the initiation codon have been found to influence the translation process; these include the downstream region and its codon context, the Shine-Dalgarno sequence and the S1 ribosomal protein-binding site. In this thesis, the purpose has been to study the role of the downstream region and Shine-Dalgarno-like sequences on early translation elongation and gene expression in <i>Escherichia coli</i>.</p><p>The downstream region (DR) after the initiation codon (around five to seven codons), has an important role in the initiation of translation. We find that most of the codons which give very low gene expression at +2 (considering AUG as +1), reach 5 to 10 fold higher expression when those codons are positioned posteriori to +2, with the exception of the NGG codons. The NGG codons abort the translation process if located within the first five codons of the DR, due to peptidyl-tRNA drop-off. However, when the NGG codons are situated further down from the DR, the protein expression was increased at the same level of expression as in the presence of any other codon.</p><p>The Shine-Dalgarno (SD) is an important region of initiation in translation of bacteria. In spite of this, it has been found that Gram-negative bacteria could translate mRNAs with weak or non-functional SD, while the DR carries out a main role in the efficiency of translation. In addition, positions of SD and SD-like sequences are very important to direct initiation of translation in the choice between two possible initiation codons. A strong SD between two initiation sites will favor the second initiation site if it consists of a canonical start codon followed by a good DR.</p><p>The results suggest that the mRNA sequences surrounding the initiation codon: the downstream region and the Shine-Dalgarno and SD-like sequences, are very important contributors to the translation level and gene expression in <i>Escherichia coli</i>.</p>
5

Studies on translation initiation and gene expression in Escherichia coli

Gonzalez de Valdivia, Ernesto I. January 2006 (has links)
In prokaryotes, several mRNA sequences surrounding the initiation codon have been found to influence the translation process; these include the downstream region and its codon context, the Shine-Dalgarno sequence and the S1 ribosomal protein-binding site. In this thesis, the purpose has been to study the role of the downstream region and Shine-Dalgarno-like sequences on early translation elongation and gene expression in Escherichia coli. The downstream region (DR) after the initiation codon (around five to seven codons), has an important role in the initiation of translation. We find that most of the codons which give very low gene expression at +2 (considering AUG as +1), reach 5 to 10 fold higher expression when those codons are positioned posteriori to +2, with the exception of the NGG codons. The NGG codons abort the translation process if located within the first five codons of the DR, due to peptidyl-tRNA drop-off. However, when the NGG codons are situated further down from the DR, the protein expression was increased at the same level of expression as in the presence of any other codon. The Shine-Dalgarno (SD) is an important region of initiation in translation of bacteria. In spite of this, it has been found that Gram-negative bacteria could translate mRNAs with weak or non-functional SD, while the DR carries out a main role in the efficiency of translation. In addition, positions of SD and SD-like sequences are very important to direct initiation of translation in the choice between two possible initiation codons. A strong SD between two initiation sites will favor the second initiation site if it consists of a canonical start codon followed by a good DR. The results suggest that the mRNA sequences surrounding the initiation codon: the downstream region and the Shine-Dalgarno and SD-like sequences, are very important contributors to the translation level and gene expression in Escherichia coli.

Page generated in 0.0984 seconds