• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Protein Interaction networks and their applications to protein characterization and cancer genes prediction

Aragüés Peleato, Ramón 13 July 2007 (has links)
La importancia de comprender los procesos biológicos ha estimulado el desarrollo de métodos para la detección de interacciones proteína-proteína. Esta tesis presenta PIANA (Protein Interactions And Network Analysis), un programa informático para la integración y el análisis de redes de interacción proteicas. Además, describimos un método que identifica motivos de interacción basándose en que las proteínas con parejas de interacción comunes tienden a interaccionar con esas parejas a través del mismo motivo de interacción. Encontramos que las proteínas altamente conectadas (i.e., hubs) con múltiples motivos tienen mayor probabilidad de ser esenciales para la viabilidad de la célula que los hubs con uno o dos motivos. Finalmente, presentamos un método que predice genes relacionados con cáncer mediante la integración de redes de interacción proteicas, datos de expresión diferenciada y propiedades estructurales, funcionales y evolutivas. El valor de predicción positiva es 71% con sensitividad del 1%, superando a otros métodos usados independientemente. / The importance of understanding cellular processes prompted the development of experimental approaches that detect protein-protein interactions. Here, we describe a software platform called PIANA (Protein Interactions And Network Analysis) that integrates interaction data from multiple sources and automates the analysis of protein interaction networks. Moreover, we describe a method that delineates interacting motifs by relying on the observation that proteins with common interaction partners tend to interact with these partners through the same interacting motif. We find that highly connected proteins (i.e., hubs) with multiple interacting motifs are more likely to be essential for cellular viability than hubs with one or two interacting motifs. Furthermore, we present a method that predicts cancer genes by integrating protein interaction networks, differential expression studies and structural, functional and evolutionary properties. For a sensitivity of 1%, the positive predictive value is 71%, which outperforms the use of any of the methods independently.

Page generated in 0.0861 seconds