Spelling suggestions: "subject:"gene regulatory network inference"" "subject:"ene regulatory network inference""
1 |
Derivation and Use of Gene Network Models to Make Quantitative Predictions of Genetic Interaction DataPhenix, Hilary January 2017 (has links)
This thesis investigates how pairwise combinatorial gene and stimulus perturbation experiments are conducted and interpreted. In particular, I investigate gene perturbation in the form of knockout, which can be achieved in a pairwise manner by SGA or CRISPR/Cas9 methods. In the present literature, I distinguish two approaches to interpretation: the calculation of stimulus and gene interactions, and the identification of equality among phenotypes measured for distinct perturbation conditions. I describe how each approach has been applied to derive hypotheses about gene regulatory networks. I identify conflicts and uncertainties in the assumptions allowing these derivations, and explore theoretically and experimentally approaches to improve the interpretation of genetic interaction data. I apply the approaches to a well-studied gene regulatory branch of the DNA damage checkpoint (DDC) pathway of Saccharomyces cerevisiae, and confirm the known order of genes within this pathway. I also describe observations that seem inconsistent with this pathway structure. I explore this inconsistency experimentally and discover that high concentrations of the DNA alkylating drug methyl methanesulfonate cause a cell division arrest program distinct from a G1 or G2/M checkpoint or from DNA damage adaptation, that resembles an endocycle.
|
2 |
Parameter optimization of linear ordinary differential equations with application in gene regulatory network inference problems / Parameteroptimering av linjära ordinära differentialekvationer med tillämpningar inom inferensproblem i regulatoriska gennätverkDeng, Yue January 2014 (has links)
In this thesis we analyze parameter optimization problems governed by linear ordinary differential equations (ODEs) and develop computationally efficient numerical methods for their solution. In addition, a series of noise-robust finite difference formulas are given for the estimation of the derivatives in the ODEs. The suggested methods have been employed to identify Gene Regulatory Networks (GRNs). GRNs are responsible for the expression of thousands of genes in any given developmental process. Network inference deals with deciphering the complex interplay of genes in order to characterize the cellular state directly from experimental data. Even though a plethora of methods using diverse conceptual ideas has been developed, a reliable network reconstruction remains challenging. This is due to several reasons, including the huge number of possible topologies, high level of noise, and the complexity of gene regulation at different levels. A promising approach is dynamic modeling using differential equations. In this thesis we present such an approach to infer quantitative dynamic models from biological data which addresses inherent weaknesses in the current state-of-the-art methods for data-driven reconstruction of GRNs. The method is computationally cheap such that the size of the network (model complexity) is no longer a main concern with respect to the computational cost but due to data limitations; the challenge is a huge number of possible topologies. Therefore we embed a filtration step into the method to reduce the number of free parameters before simulating dynamical behavior. The latter is used to produce more information about the network’s structure. We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise on a 1565-gene E.coli gene regulatory network. We show the computation time over various network sizes and estimate the order of computational complexity. Results on five networks in the benchmark collection DREAM4 Challenge are also presented. Results on five networks in the benchmark collection DREAM4 Challenge are also presented and show our method to outperform the current state of the art methods on synthetic data and allows the reconstruction of bio-physically accurate dynamic models from noisy data. / I detta examensarbete analyserar vi parameteroptimeringsproblem som är beskrivna med ordinära differentialekvationer (ODEer) och utvecklar beräkningstekniskt effektiva numeriska metoder för att beräkna lösningen. Dessutom härleder vi brusrobusta finita-differens approximationer för uppskattning av derivator i ODEn. De föreslagna metoderna har tillämpats för regulatoriska gennätverk (RGN). RGNer är ansvariga för uttrycket av tusentals gener. Nätverksinferens handlar om att identifiera den komplicerad interaktionen mellan gener för att kunna karaktärisera cellernas tillstånd direkt från experimentella data. Tillförlitlig nätverksrekonstruktion är ett utmanande problem, trots att många metoder som använder många olika typer av konceptuella idéer har utvecklats. Detta beror på flera olika saker, inklusive att det finns ett enormt antal topologier, mycket brus, och komplexiteten av genregulering på olika nivåer. Ett lovande angreppssätt är dynamisk modellering från biologiska data som angriper en underliggande svaghet i den för tillfället ledande metoden för data-driven rekonstruktion. Metoden är beräkningstekniskt billig så att storleken på nätverket inte längre är huvudproblemet för beräkningen men ligger fortfarande i databegränsningar. Utmaningen är ett enormt antal av topologier. Därför bygger vi in ett filtreringssteg i metoder för att reducera antalet fria parameterar och simulerar sedan det dynamiska beteendet. Anledningen är att producera mer information om nätverkets struktur. Vi utvärderar metoden på simulerat data, och studierar dess prestanda med avseende på datastorlek och brusnivå genom att tillämpa den på ett regulartoriskt gennätverk med 1565-gen E.coli. Vi illustrerar beräkningstiden över olika nätverksstorlekar och uppskattar beräkningskomplexiteten. Resultat på fem nätverk från DREAM4 är också presenterade och visar att vår metod har bättre prestanda än nuvarande metoder när de tillämpas på syntetiska data och tillåter rekonstruktion av bio-fysikaliskt noggranna dynamiska modeller från data med brus.
|
3 |
DeTangle: A Framework for Interactive Prediction and Visualization of Gene Regulatory NetworksAltarawy, Doaa Abdelsalam Ahmed Mohamed 02 May 2017 (has links)
With the abundance of biological data, computational prediction of gene regulatory networks (GRNs) from gene expression data has become more feasible. Although incorporating other prior knowledge (PK), along with gene expression, greatly improves prediction accuracy, the accuracy remains low. PK in GRN inference can be categorized into noisy and curated. Several algorithms were proposed to incorporate noisy PK, but none address curated PK. Another challenge is that much of the PK is not stored in databases or not in a unified structured format to be accessible by inference algorithms. Moreover, no GRN inference method exists that supports post-prediction PK.
This thesis addresses those limitations with three solutions: PEAK algorithm for integrating both curated and noisy PK, Online-PEAK for post-prediction interactive feedback, and DeTangle for visualization and navigation of GRNs.
PEAK integrates both curated as well as noisy PK in GRN inference. We introduce a novel method for GRN inference, CurInf, to effectively integrate curated PK, and we use the previous method, Modified Elastic Net, for noisy PK, and we call it NoisInf. Using 100% curated PK, CurInf improves the AUPR accuracy score over NoisInf by 27.3% in synthetic data, 86.5% in E. coli data, and 31.1% in S. cerevisiae data.
Moreover, we developed an online algorithm, online-PEAK, that enables the biologist to interact with the inference algorithm, PEAK, through a visual interface to add their domain experience about the structure of the GRN as a feedback to the system. We experimentally verified the ability of online-PEAK to achieve incremental accuracy when PK is added by the user, including true and false PK. Even when the noise in PK is 10 times more than true PK, online-PEAK performs better than inference without any PK.
Finally, we present DeTangle, a Web server for interactive GRN prediction and visualization. DeTangle provides a seamless analysis of GRN starting from uploading gene expression, GRN inference, post-prediction feedback using online-PEAK, and visualization and navigation of the predicted GRN. More accurate prediction of GRN can facilitate studying complex molecular interactions, understanding diseases, and aiding drug design. / Ph. D. / Proteins are complex molecules that are responsible for most of the functionalities in living organisms. Proteins are produced from genes inside the cells. The production of proteins can be controlled by other proteins causing their production to increase or to decrease. This control is called gene regulation. Studying gene regulation between genes is important because it facilitates understanding diseases and aiding drug design. In this thesis, I developed computational methods, called PEAK and online-PEAK, to predict the interactions between genes using computer algorithms. My test results show that the method PEAK is more accurate than previous existing methods. I have also built a Web application, DeTangle, to help biologists use the algorithm and visualize the results.
|
Page generated in 0.1249 seconds