• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles

Kirchhoff-Lukat, Charlotte Sophie January 2018 (has links)
This thesis explores aspects of generalized geometry, a geometric framework introduced by Hitchin and Gualtieri in the early 2000s. In the first part, we introduce a new class of submanifolds in stable generalized complex manifolds, so-called Lagrangian branes with boundary. We establish a correspondence between stable generalized complex geometry and log symplectic geometry, which allows us to prove results on local neighbourhoods and small deformations of this new type of submanifold. We further investigate Lefschetz thimbles in stable generalized complex Lefschetz fibrations and show that Lagrangian branes with boundary arise in this context. Stable generalized complex geometry provides the simplest examples of generalized complex manifolds which are neither complex nor symplectic, but it is sufficiently similar to symplectic geometry for a multitude of symplectic results to generalize. Our results on Lefschetz thimbles in stable generalized complex geometry indicate that Lagrangian branes with boundary are part of a potential generalisation of the Wrapped Fukaya category to stable generalized complex manifolds. The work presented in this thesis should be seen as a first step towards the extension of Floer theory techniques to stable generalized complex geometry, which we hope to develop in future work. The second part of this thesis studies Dorfman brackets, a generalisation of the Courant- Dorfman bracket, within the framework of double vector bundles. We prove that every Dorfman bracket can be viewed as a restriction of the Courant-Dorfman bracket on the standard VB-Courant algebroid, which is in this sense universal. Dorfman brackets have previously not been considered in this context, but the results presented here are reminiscent of similar results on Lie and Dull algebroids: All three structures seem to fit into a more general duality between subspaces of sections of the standard VB-Courant algebroid and brackets on vector bundles of the form T M ⊕ E ∗ , E → M a vector bundle. We establish a correspondence between certain properties of the brackets on one, and the subspaces on the other side.
2

The AdS/CFT correspondence and generalized geometry

Gabella, Maxime January 2011 (has links)
The most general AdS$_5 imes Y$ solutions of type IIB string theory that are AdS/CFT dual to superconformal field theories in four dimensions can be fruitfully described in the language of generalized geometry, a powerful hybrid of complex and symplectic geometry. We show that the cone over the compact five-manifold $Y$ is generalized Calabi-Yau and carries a generalized holomorphic Killing vector field $xi$, dual to the R-symmetry. Remarkably, this cone always admits a symplectic structure, which descends to a contact structure on $Y$, with $xi$ as Reeb vector field. Moreover, the contact volumes of $Y$, which can be computed by localization, encode essential properties of the dual CFT, such as the central charge and the conformal dimensions of BPS operators corresponding to wrapped D3-branes. We then define a notion of ``generalized Sasakian geometry'', which can be characterized by a simple differential system of three symplectic forms on a four-dimensional transverse space. The correct Reeb vector field for an AdS$_5$ solution within a given family of generalized Sasakian manifolds can be determined---without the need of the explicit metric---by a variational procedure. The relevant functional to minimize is the type IIB supergravity action restricted to the space of generalized Sasakian manifolds, which turns out to be just the contact volume. We conjecture that this contact volume is equal to the inverse of the trial central charge whose maximization determines the R-symmetry of the dual superconformal field theory. The power of this volume minimization is illustrated by the calculation of the contact volumes for a new infinite family of solutions, in perfect agreement with the results of $a$-maximization in the dual mass-deformed generalized conifold theories.
3

Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space Geometry

Bredthauer, Andreas January 2006 (has links)
<p>In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models.</p><p>The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence.</p><p>For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.</p>
4

Strings as Sigma Models and in the Tensionless Limit

Persson, Jonas January 2007 (has links)
<p>This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.</p>
5

Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space Geometry

Bredthauer, Andreas January 2006 (has links)
In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.
6

Strings as Sigma Models and in the Tensionless Limit

Persson, Jonas January 2007 (has links)
This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.
7

Generalized geometry of type Bn

Rubio, Roberto January 2014 (has links)
Generalized geometry of type B<sub>n</sub> is the study of geometric structures in T+T<sup>&ast;</sup>+1, the sum of the tangent and cotangent bundles of a manifold and a trivial rank 1 bundle. The symmetries of this theory include, apart from B-fields, the novel A-fields. The relation between B<sub>n</sub>-geometry and usual generalized geometry is stated via generalized reduction. We show that it is possible to twist T+T<sup>&ast;</sup>+1 by choosing a closed 2-form F and a 3-form H such that dH+F<sup>2</sup>=0. This motivates the definition of an odd exact Courant algebroid. When twisting, the differential on forms gets twisted by d+F&tau;+H. We compute the cohomology of this differential, give some examples, and state its relation with T-duality when F is integral. We define B<sub>n</sub>-generalized complex structures (B<sub>n</sub>-gcs), which exist both in even and odd dimensional manifolds. We show that complex, symplectic, cosymplectic and normal almost contact structures are examples of B<sub>n</sub>-gcs. A B<sub>n</sub>-gcs is equivalent to a decomposition (T+T<sup>&ast;</sup>+1)<sub>&Copf;</sub>= L + L + U. We show that there is a differential operator on the exterior bundle of L+U, which turns L+U into a Lie algebroid by considering the derived bracket. We state and prove the Maurer-Cartan equation for a B<sub>n</sub>-gcs. We then work on surfaces. By the irreducibility of the spinor representations for signature (n+1,n), there is no distinction between even and odd B<sub>n</sub>-gcs, so the type change phenomenon already occurs on surfaces. We deal with normal forms and L+U-cohomology. We finish by defining G<sup>2</sup><sub>2</sub>-structures on 3-manifolds, a structure with no analogue in usual generalized geometry. We prove an analogue of the Moser argument and describe the cone of G<sup>2</sup><sub>2</sub>-structures in cohomology.

Page generated in 0.1214 seconds