Spelling suggestions: "subject:"generalized modes"" "subject:"generalized codes""
1 |
Seakeeping for the T-Craft Using Linear Potential and Nonlinear Dynamic MethodsBandas, John 2012 May 1900 (has links)
A system of ordinary differential equations (ODE) is constructed for an air cushion vehicle (ACV). The system is simplified to an equation for the balance of the vertical forces and the equation for the adiabatic compression of the air in the cushion. Air pressure is constantly supplied into the system, but can leak out from underneath the edges of the cushion. A series of regular waves encounters the air cushion, causing a change in volume.
Additionally, a computational analysis of the seakeeping of a Surface Effect Ship (SES) is performed using the commercial software WAMIT, which uses low-order, linear potential panel method. The model of the T-Craft consists of catamaran hulls, rigid end skirts, and the interface between the air cushion and the water surface. Beyond the six rigid body degrees of freedom of the T-Craft, additional modes are added for the motion of the interface panels. To verify the method used, the model is benchmarked using computational data for a small-scale barge model and experimental data for a T-Craft model. A comparison is performed for the T-Craft with and without its cushion.
The solution for the nonlinear time-domain system is found numerically, and the stability of the system is studied by observing bifurcations with the incoming wave amplitude as the bifurcation parameter. The system experiences a period-doubling bifurcation, from a periodic orbit, to a subharmonic orbit, to a solution with multiple periods. Further increasing the wave amplitude increases the period doubling, eventually leading to chaotic behavior.
As a result of the linear-potential simulations, significant differences are found in the seakeeping of the T-Craft when on and off the cushion. These differences are caused by the direct and indirect effects of the cushion (added aerodynamics and a decreased draft). The RAO's of the craft experience changes in amplitude and phase, which will affect the multi-body relative motions. The time-domain model shows very chaotic behaviour that is presented visually in a bifurcation diagram. These linear potential and time-domain methods illustrate the complexity and importance of modelling air-cushion effects.
|
2 |
Wave Interactions with Arrays of Bottom-Mounted Circular Cylinders: Investigation of Optical and Acoustical AnalogiesBaquet, Aldric 2010 August 1900 (has links)
Wave scattering by arrays of cylinders has received special attention by many authors and analytical solutions have been derived. The investigation of optical and acoustical analogies to the problem of interaction of water waves with rigid and flexible cylinder arrays is the main focus of this thesis. In acoustics, a sound may be attenuated while it propagates through a layer of bubbly liquid. In fact, if the natural frequency of the bubbles is in the range of the wave periods, the attenuation becomes more evident. The ultimate objective of the research described herein is to determine if this phenomenon may also be found in the interaction between water waves and arrays of flexible cylinders.
In a first approach, arrays of rigid cylinders are studied in shallow water. The array is treated as an effective medium, which allows for the definition of reflection and transmission coefficients for the array, and theories from Hu and Chan (2005) associated with the Fabry-Perot interferometer are compared against direct computations of wave scattering using the commercial code WAMIT. Reflection and transmission coefficients from WAMIT are evaluated by applying a Maximum Likelihood Method. The results from WAMIT were found to be in good agreement with those obtained from the effective medium theory. Due to observed inconsistencies for short wave periods and small incident angles, the effective width of the medium is defined and corrected.
For the case of a flexible cylinder, generalized modes corresponding to deformations of the cylinder's surface are formulated and added to WAMIT's subroutine. Equations of motion are derived from the theory of vibration for thin shells and mass and stiffness matrices are defined. The objective is to maximize wave attenuation from the array of flexible cylinders. Therefore, the natural periods of the "breathing" mode for these cylinders is set in the range of the studied wave periods. Then, material properties, as well as mass and stiffness matrices, are chosen to achieve this effect.
|
3 |
Fluid-Structure Interaction Modeling of a Flexible-Inflatable Heaving Wave Energy Converter Through Generalized ModesLenderink, Corbin Robert 12 June 2024 (has links)
The point absorber, one of the most popular types of ocean wave energy converter (WEC), usually consists of a rigid body buoy that can be efficiently modeled using existing WEC simulation tools. However, new wave energy technologies have looked to utilize flexible buoy structures to decrease costs, improve power generation, and increase portability. In addition to replacing rigid body designs, the combination of multiple renewable energy sources is another area that shows promising potential for increasing WEC power generation. With these concepts in mind, this work considers a new WEC design that features a flexible-inflatable buoy, an ocean current harvesting turbine, and a buoy shape that has been optimized for simultaneous wave and current energy harvesting. For this device, conventional modeling techniques cannot be used due to the highly nonlinear hydrodynamic interactions that result between the flexible buoy and the ocean waves. As a result, a Fluid-Structure Interaction (FSI) model must be used to determine how the flexibility of the buoy will influence the device's power generation. Currently, high-fidelity FSI modeling approaches are computationally expensive and unsuitable for early design decisions. As a result, this thesis utilizes a mid-fidelity method, the generalized modes modeling approach, to accurately and efficiently model the FSI of a WEC's flexible buoy. The resulting flexible buoy model was then compared to a rigid design to determine the performance differences between a rigid and flexible buoy, with a complex, optimized shape. / Master of Science / The ocean is a vast potential energy resource with a variety of different sources of renewable energy. Of these sources, ocean waves and ocean currents are two potentially massive power reserves present in many coastal areas. To capture energy from these sources, this work discusses the development of a device that can harvest energy from ocean waves and ocean currents simultaneously. In addition to harvesting energy from multiple sources, this device also features a flexible-inflatable buoy, with a shape that has been optimized for this unique application. However, since this device utilizes flexible materials, traditional modeling techniques used for rigid body designs would not be applicable. As a result, this work looks to model the interaction between the flexible buoy and the ocean waves to accurately predict the power generation of this device's wave energy converter.
|
Page generated in 0.0745 seconds