• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized linear differential equations in a Banach space: continuous dependence on parameters and applications / Equações diferenciais generalizadas lineares em espaços de Banach: dependência contínua com relação a parâmetros e aplicações

Giselle Antunes Monteiro 14 February 2012 (has links)
The purpose of this work is to investigate continuous dependence on parameters for generalized linear differential equations in a Banach space- valued setting. More precisely, we establish a theorem inspired by the clas- sical continuous dependence result due to Z. Opial. In addition, our second outcome extends, to Banach spaces, the result proved by M. Ashordia in the framework of finite dimensional generalized linear differential equations. Roughly speaking, the continuous dependence derives from assumptions of uniform convergence of the functions in the right-hand side of the equations, together with the uniform boundedness of variation of the linear terms. Fur- thermore, applications of these results to dynamic equations on time scales and also to functional differential equations are proposed. Besides these results on continuous dependence, we complete the theory of abstract Kurzweil-Stieltjes integration so that it is well applicable for our purposes in generalized linear differential equations. In view of this, our contributions are related not only to differential equations but also to the abstract Kurzweil-Stieltjes integration theory itself. The new results presented in this work are contained in the papers [26] and [27], both accepted for publication / O objetivo deste trabalho é investigar a dependência contínua de soluções em relação a parâmetros para equações diferenciais lineares generalizadas no contexto de espaços de Banach. Mais precisamente, apresentamos um teo- rema inspirado no resultado clássico de dependência contínua obtido por Z. Opial. Nosso segundo resultado estende, para espaços de Banach, o provado por M. Ashordia no contexto de equações diferenciais lineares gen- eralizadas em dimensão finita. Em linhas gerais, a dependência contínua decorre da convergência uniforme das funções à direita das equações, junta- mente com a limitação uniforme da variação dos termos lineares. No mais, são propostas aplicações desses resultados em equações dinâmicas em escalas temporais e também em equações diferenciais funcionais. Além dos resultados em dependência contínua, completamos à teoria de integração abstrata de Kurzweil-Stieltjes de modo que esta se adeque aos nossos propósitos em equações diferenciais lineares generalizadas. Assim, nossas contribuições dizem respeito não apenas a equações diferenciais, mas também a teoria de integração abstrata de Kurzweil-Stieltjes em si. Os resultados originais apresentados neste trabalho estão contidos nos artigos [26] e [27], ambos aceitos para publicação
2

Generalized linear differential equations in a Banach space: continuous dependence on parameters and applications / Equações diferenciais generalizadas lineares em espaços de Banach: dependência contínua com relação a parâmetros e aplicações

Monteiro, Giselle Antunes 14 February 2012 (has links)
The purpose of this work is to investigate continuous dependence on parameters for generalized linear differential equations in a Banach space- valued setting. More precisely, we establish a theorem inspired by the clas- sical continuous dependence result due to Z. Opial. In addition, our second outcome extends, to Banach spaces, the result proved by M. Ashordia in the framework of finite dimensional generalized linear differential equations. Roughly speaking, the continuous dependence derives from assumptions of uniform convergence of the functions in the right-hand side of the equations, together with the uniform boundedness of variation of the linear terms. Fur- thermore, applications of these results to dynamic equations on time scales and also to functional differential equations are proposed. Besides these results on continuous dependence, we complete the theory of abstract Kurzweil-Stieltjes integration so that it is well applicable for our purposes in generalized linear differential equations. In view of this, our contributions are related not only to differential equations but also to the abstract Kurzweil-Stieltjes integration theory itself. The new results presented in this work are contained in the papers [26] and [27], both accepted for publication / O objetivo deste trabalho é investigar a dependência contínua de soluções em relação a parâmetros para equações diferenciais lineares generalizadas no contexto de espaços de Banach. Mais precisamente, apresentamos um teo- rema inspirado no resultado clássico de dependência contínua obtido por Z. Opial. Nosso segundo resultado estende, para espaços de Banach, o provado por M. Ashordia no contexto de equações diferenciais lineares gen- eralizadas em dimensão finita. Em linhas gerais, a dependência contínua decorre da convergência uniforme das funções à direita das equações, junta- mente com a limitação uniforme da variação dos termos lineares. No mais, são propostas aplicações desses resultados em equações dinâmicas em escalas temporais e também em equações diferenciais funcionais. Além dos resultados em dependência contínua, completamos à teoria de integração abstrata de Kurzweil-Stieltjes de modo que esta se adeque aos nossos propósitos em equações diferenciais lineares generalizadas. Assim, nossas contribuições dizem respeito não apenas a equações diferenciais, mas também a teoria de integração abstrata de Kurzweil-Stieltjes em si. Os resultados originais apresentados neste trabalho estão contidos nos artigos [26] e [27], ambos aceitos para publicação

Page generated in 0.1998 seconds