• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE RECURSIVE ALGORITHMS FOR GDOP AND POSITIONING SOLUTION IN GPS

Qing, Chang, Zhongkan, Liu, Qishan, Zhang 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper proves theoretically that GDOP decreases as the number of satellites is increased.This paper proposes two recursive algorithms for calculating the GDOP and positioning solution.These algorithms not only can recursively calculate the GDOP and positioning solution, but also is very flexible in obtaining the best four-satellite positioning solution ,the best five-satellite positioning solution and the all visible satellite positioning solution according to given requirements. In the need of the two algorithms,this paper extends the definition of the GDOP to the case in which the number of visible satellites is less than 4.
2

Generating Generalized Inverse Gaussian Random Variates by Fast Inversion

Leydold, Josef, Hörmann, Wolfgang January 2009 (has links) (PDF)
We demonstrate that for the fast numerical inversion of the (generalized) inverse Gaussian distribution two algorithms based on polynomial interpolation are well-suited. Their precision is close to machine precision and they are much faster than the bisection method recently proposed by Y. Lai. / Series: Research Report Series / Department of Statistics and Mathematics
3

[en] CONVENTIONAL, HYBRID AND SIMPLIFIED BOUNDARY ELEMENT METHODS / [pt] MÉTODOS DE ELEMENTOS DE CONTORNO CONVENCIONAL, HÍBRIDOS E SIMPLIFICADOS

MARIA FERNANDA FIGUEIREDO DE OLIVEIRA 08 October 2004 (has links)
[pt] Apresentam-se as formulações, consolidando a nomenclatura e os principais conceitos dos métodos de elementos de contorno: convencional (MCCEC), híbrido de tensões (MHTEC), híbrido de deslocamentos (MHDEC) e híbrido simplificado de tensões (MHSTEC). proposto o método híbrido simplificado de deslocamentos (MHSDEC), em contrapartida ao MHSTEC, baseando-se nas mesmas hipóteses de aproximação de tensões e deslocamentos do MHDEC e supondo que a solução fundamental em termos de tensões seja válida no contorno. Como decorrência do MHSTEC e do MHSDEC, é apresentado também o método híbrido de malha reduzida dos elementos de contorno (MHMREC), com aplicação computacionalmente vantajosa a problemas no domínio da freqüência ou envolvendo materiais não-homogêneos. A partir da investigação das equações matriciais desses métodos, são identificadas quatro novas relações matriciais, das quais uma verifica-se como válida para a obtenção dos elementos das matrizes de flexibilidade e de deslocamento que não podem ser determinados por integração ou avaliação direta. Também é proposta a correta consideração, ainda não muito bem explicada na literatura, de que forças de superfície devem ser interpoladas em função de atributos de superfície e não de atributos nodais. São apresentadas aplicações numéricas para problemas de potencial para cada método mencionado, em que é verificada a validade das novas relações matriciais. / [en] A consolidated, unified formulation of the conventional (CCBEM), hybrid stress (HSBEM), hybrid displacement (HDBEM) and simplified hybrid stress (SHSBEM) boundary element methods is presented. As a counterpart of SHSBEM, the simplified hybrid displacement boundary element method (SHDBEM) is proposed on the basis of the same stress and displacement approximation hypotheses of the HDBEM and on the assumption that stress fundamental solutions are also valid on the boundary. A combination of the SHSBEM and the SHDBEM gives rise to a provisorily called mesh-reduced hybrid boundary element method (MRHBEM), which seems computationally advantageous when applied to frequency domain problems or non-homogeneous materials. Four new matrix relations are identified, one of which may be used to obtain the flexibility and displacement matrix coefficients that cannot be determined by integration or direct evaluation. It is also proposed the correct consideration, still not well explained in the technical literature, that traction forces should be interpolated as functions of surface and not of nodal attributes. Numerical examples of potential problems are presented for each method, in which the validity of the new matrix relations is verified.
4

Generating Generalized Inverse Gaussian Random Variates

Hörmann, Wolfgang, Leydold, Josef January 2013 (has links) (PDF)
The generalized inverse Gaussian distribution has become quite popular in financial engineering. The most popular random variate generator is due to Dagpunar (1989). It is an acceptance-rejection algorithm method based on the Ratio-of-uniforms method. However, it is not uniformly fast as it has a prohibitive large rejection constant when the distribution is close to the gamma distribution. Recently some papers have discussed universal methods that are suitable for this distribution. However, these methods require an expensive setup and are therefore not suitable for the varying parameter case which occurs in, e.g., Gibbs sampling. In this paper we analyze the performance of Dagpunar's algorithm and combine it with a new rejection method which ensures a uniformly fast generator. As its setup is rather short it is in particular suitable for the varying parameter case. (authors' abstract) / Series: Research Report Series / Department of Statistics and Mathematics
5

Approche mathématique pour la modulation de largeur d'impulsion pour la conversion statique de l'énergie électrique : application aux onduleurs multiniveaux / Mathematical approach for pulse width modulation PWM for static conversion of electrical energy : application to multilevel inverters

Berkoune, Karima 01 July 2016 (has links)
Les convertisseurs d'électronique de puissance sont de plus en plus exploités notamment dans les applications nécessitant la variation de vitesse de machines. L'utilisation de composants plus performants et plus puissants couplés à de nouvelles structures multiniveaux autorise l'accès à de nouveaux champs applicatifs, ou des fonctionnements à plus haut rendement. Ces convertisseurs statiques sont capables de gérer, par un pilotage adapté, les transferts d'énergie entre différentes sources et différents récepteurs selon la famille de convertisseur utilisée. Au sein de l'interface de pilotage, un schéma particulier permet de générer des signaux de commande pour les interrupteurs, il s'agit de la modulation et peut être vue par deux approches différentes : L'approche intersective issue d'une comparaison modulante-horteuse (appelée en anglais carrier based PWM) et l'approche vectorielle où les signaux de pilotage des trois bras de ponts sont considérés comme un vecteur global unique (appelée Modulation Vectorielle SVM). Le but de la MLI est de générer une valeur moyenne de la tension la plus proche possible du signal modulé. La commande usuelle par comparaison modulante-porteuse dans le cas des architectures multiniveaux nécessite autant de porteuses triangulaires qu'il y a de cellules à commander au sein d'un bras. Plus généralement, la stratégie de modulation de chacune des topologies multiniveaux est choisie en se basant sur des critères à optimiser liés à la qualité les formes d'ondes produites ou obtenues, suite à la conversion. Le choix de la variable de commande à implémenter dans le schéma MLI fait appel à l'expertise de l'expérimentateur et se réfère peu au modèle mathématique initial qui peut-être établit pour caractériser le fonctionnement de l'architecture d'électronique de puissance. En ce qui concerne les stratégies vectorielles SVM, une absence de modèle compatible avec les modèles, basés sur une comparaison modulante porteuse, d'onduleurs est constatée. Les types d'onduleurs triphasés à deux ou à N niveaux de tension admettent un modèle sous forme d'équations d'un système linéaire compatible qui s'écrit sous la forme V = f(a) dans le cas d'une MLI sinusoïdale et V = f(1) dans le cas d'une SVM, avec V les tensions de phase, a les rapports cycliques et f les instants de commutation. Dans cette configuration basique il est constaté que la matrice liant ces tensions aux rapports cycliques (ou aux instants de commutation) n'admet pas d'inverse, ce qui revient à dire qu'il n'est pas possible, avec les théories usuelles des fonctions linéaires, de résoudre ce système afin d'exprimer les rapports cycliques (ou les instants de commutation) en fonction des tensions de références. C'est ce qui explique qu'aujourd'hui un bon nombre d'implémentations pratiques de modulation se fait, suite à une analyse expérimentale des conséquences d'un choix de stratégie sur les variables d'intérêt. / The power electronic converters are increasingly exploited in particular in applications requiring variable speed machines. The use of more effcient and more powerful components coupled with new multilevel structures widens the fields of application and allows high efficiency functioning. These converters are able to manage, with a suitable control, the energy transfer between different sources and different receivers depending on the used converter family. In the control interface, a particular pattern is used to generate control signais for the switches, it is the modulation. Generally, the modulation strategy takes two forms : a Modulation based on comparaison modulating - caiTier (Carrier based Pulse Width Modulation, (CPWM)) or a Vector Modulation (SVM). The purpose of the PWM is to generate a signal which has a mean value as nearest as possible to the desired sinusoidal signal. The usual control by PWM, in the case of multi-level architectures, requires as many triangular carriers as there are cells to be controlled within an arm. The modulation strategy selection for each multilevel topology is based on optimizing criterias related to the quality of the produced waveforms after the conversion. The choice of the variable to implement in the PWM scheme requires expertise of the experimenter and refers little to the initial mathematical model that can be established to characterize the operation of the power electronics architecture. Concerning the vector strategies SVM, the lack of a compatible model with PWM inverters is observed. The three-phase inverters with two or N voltage levels can be modeled in the form of equations of a compatible linear system that is written as V= f(a) in the case of a sinusoïdal PWM and V= f(1) in the case of SVM, with V represents phase voltages, ais a duty cycle and fthe switching instants. In this basic configuration, it is found that the matrix linking these voltages duty cycles (or switching times) adrnits no inverse, which means that it is not possible with the usuallinear functions theories to solve this system in order to express the duty ratios (or the instants of switching) as a function of the reference voltages. This is the reason that today a number of practical implementations of modulation is done after experimental analysis of the consequences of strategy choices on the variables of interest. This study proposes the development of a generic formulation for the modeling of voltage inverters and especially multilevel inverters. The development of generic models for the implementation of modulation strategies is illustrated. The extension of the average model to the three-phase systems is performed to the usual structures of N levels such as the floating capacity and H bridge inverters. The idea is to generalize the model to the multi-level architectures, whether by the sinusoidal PWM modulation expressing the alpha as an output variable, or by the SVM expressing tau. This thesis aims to define a modeling approach and mathematically express the set of solutions in order to generate modulation strategies for various architectures of inverters studied. This will be done using a tool for solving linear systems. This resolution is based on finding degrees of freedom, to be identified at first, then express them in a second step by establishing the link with the criteria to optimize for given architectures. Two examples of application have been implemented on conventional two levels of voltage inverters and the thtree levels flying capacitor voltage inverter.
6

The Growth Curve Model for High Dimensional Data and its Application in Genomics

Jana, Sayantee 04 1900 (has links)
<p>Recent advances in technology have allowed researchers to collect high-dimensional biological data simultaneously. In genomic studies, for instance, measurements from tens of thousands of genes are taken from individuals across several experimental groups. In time course microarray experiments, gene expression is measured at several time points for each individual across the whole genome resulting in massive amount of data. In such experiments, researchers are faced with two types of high-dimensionality. The first is global high-dimensionality, which is common to all genomic experiments. The global high-dimensionality arises because inference is being done on tens of thousands of genes resulting in multiplicity. This challenge is often dealt with statistical methods for multiple comparison, such as the Bonferroni correction or false discovery rate (FDR). We refer to the second type of high-dimensionality as gene specific high-dimensionality, which arises in time course microarry experiments due to the fact that, in such experiments, sample size is often smaller than the number of time points ($n</p> <p>In this thesis, we use the growth curve model (GCM), which is a generalized multivariate analysis of variance (GMANOVA) model, and propose a moderated test statistic for testing a special case of the general linear hypothesis, which is specially useful for identifying genes that are expressed. We use the trace test for the GCM and modify it so that it can be used in high-dimensional situations. We consider two types of moderation: the Moore-Penrose generalized inverse and Stein's shrinkage estimator of $ S $. We performed extensive simulations to show performance of the moderated test, and compared the results with original trace test. We calculated empirical level and power of the test under many scenarios. Although the focus is on hypothesis testing, we also provided moderated maximum likelihood estimator for the parameter matrix and assessed its performance by investigating bias and mean squared error of the estimator and compared the results with those of the maximum likelihood estimators. Since the parameters are matrices, we consider distance measures in both power and level comparisons as well as when investigating bias and mean squared error. We also illustrated our approach using time course microarray data taken from a study on Lung Cancer. We were able to filter out 1053 genes as non-noise genes from a pool of 22,277 genes which is approximately 5\% of the total number of genes. This is in sync with results from most biological experiments where around 5\% genes are found to be differentially expressed.</p> / Master of Science (MSc)
7

Matrices inversas generalizadas definidas mediante proyectores y su aplicación a órdenes parciales matriciales

Hernández, María Valeria 05 September 2022 (has links)
[ES] El Análisis Matricial proporciona herramientas muy útiles en la Matemática Aplicada. La teoría de matrices inversas generalizadas constituye una de estas herramientas. Su aplicación a otras áreas de las matemáticas y a otras disciplinas es importante. En esta tesis doctoral se definen e investigan nuevas inversas generalizadas, y se encuentran y caracterizan nuevos órdenes parciales definidos a partir de algunas de ellas. Por lo tanto, esta tesis doctoral se enmarca en dos importantes áreas: el Análisis Matricial y la Teoría de Matrices, y el Algebra de la Lógica (Estructuras Algebraicas Ordenadas). En la primera parte de esta tesis se define e investiga una nueva clase de inversas generalizadas híbridas, las inversas GDMP (y dualmente, las MPGD inversas) en el conjunto de matrices cuadradas de índice arbitrario, como una extensión de las inversas DMP a una clase más general. En esta tesis se presentan las nuevas inversas generalizadas GDMP como cierto producto de matrices que involucra las inversas G-Drazin y la inversa de Moore- Penrose. Se investigan sus propiedades mediante diferentes enfoques y se las caracteriza desde diferentes puntos de vista. Como complemento, se proporciona un algoritmo para hallarlas, que además permite encontrar una inversa G-Drazin. El estudio de proyectores es un área importante en diferentes ramas de las Matemáticas y en el Análisis Matricial en particular. La teoría de inversas generalizadas se utiliza como herramienta para analizarlos y operar con ellos. En la segunda parte de esta tesis se estudia el comportamiento de ciertos proyectores oblicuos definidos mediante inversas generalizadas. A partir de la definición de una adecuada relación de equivalencia en conjuntos particulares de matrices complejas, se introduce una nueva clase de matrices inversas generalizadas como el representante "más simple" de cada clase de equivalencia. Además, se representan como combinación de una inversa interior y la inversa de Moore-Penrose. Esta es la razón por la que se las ha denominado inversas 1MP y MP1. De manera similar se introducen las inversas 2MP y sus duales, las MP2. M. Mehdipour y A. Salemi definieron en [53j la inversa CMP de una matriz cuadrada A poniendo el énfasis en la parte core de la propia matriz A. En esta tesis doctoral se realiza un análisis similar, centrando el enfoque en las inversas 2MP. Surgen de esta manera las inversas generalizadas C2MP. La teoría de inversas generalizadas se relaciona estrechamente con la de órdenes parciales. En esta tesis se retoma el estudio, comenzado en [45], de las propiedades del orden diamante en conjuntos de matrices rectangulares. Como una aplicación de las inversas generalizadas 1MP y MP1, se definen dos nuevas relaciones de orden en conjuntos de matrices rectangulares. Esta tesis está organizadas en cuatro capítulos. En el Capítulo 1 se desarrollan algunos antecedentes del tema de la tesis y se presentan los resultados preliminares necesarios para el desarrollo del resto de los capítulos. En el Capítulo 2 se presentan las clases de matrices GDMP y MPGD, se demuestran propiedades de estas inversas y se describe un algoritmo para hallarlas. El Capítulo 3 se aboca al estudio de ciertos proyectores que permiten definir las clases de inversas generalizadas 1MP, MP1, 2MP y MP2. Al tomar un caso particular de inversa exterior, se definen las inversas C2MP. Además, se presentan las inversas definidas en esta tesis como inversas con espacio rango y espacio nulo prescrito. Finalmente, en el Capítulo 4, con la intención de estudiar una aplicación de la teoría de inversas generalizadas, se profundiza el estudio de órdenes parciales, proporcionando nuevas propiedades del orden diamante. También, se presentan e investigan dos nuevas relaciones de orden en el conjunto de matrices rectangulares y se analizan sus propiedades. Algunos de los resultados obtenidos en esta tesis pueden encontrarse en [37, 38, 39, 40, 41j. / [CA] L'Analisi Matricial proporciona eines molt útils en la Matematica Aplicada. La teoria de matrius inverses generalitzades constitueix una d'aquestes eines. La seua aplicació a altres arees de les matematiques i a altres disciplines és important. En aquesta tesi doctoral es defineixen i investiguen noves inverses generalitzades, i es troben i caracteritzen nous ordres parcials definits a partir d'algunes d'elles. Per tant, aquesta tesi doctoral s'emmarca en dues importants arees: l'Analisi Matricial i la Teoria de Matrius, i l' Álgebra de la Lógica (Estructures Algebraiques Ordenades). En la primera part d'aquesta tesi es defineix i investiga una nova classe d'inverses generalitzades híbrides, les invernes GDMP (i dualment, les MPGD invernes) en el conjunt de matrius quadrades d'índex arbitrari, com una extensió de les invernes DMP a una classe més general. En aquesta tesi es presenten les noves invernes generalitzades GDMP com a cert producte de matrius que involucra les invernes G-Drazin i la inversa de Moore-Penrose. S'investiguen les seues propietats mitjanc;ant diferents enfocaments i es caracteritzen des de diferents punts de vista. Com a complement, es proporciona un algorisme per a trabar-les, que a més permet trabar una inversa G-Drazin. L'estudi de projectors és una area important en diferents branques de les Matemati­ ques i en l' Analisi Matricial en particular. La teoría d'inverses generalitzades s'utilitza com a eina per a analitzar-los i operar amb ells. En la segona part d'aquesta tesi s'estudia el comportament d'uns certs projectors oblics definits mitjanc;ant invernes generalitzades. A partir de la definició d'una adequada relació d'equivalencia en conjunts particulars de matrius complexes, s'introdueix una nova classe de matrius invernes generalitzades com el representant "més simple" de cada classe d'equivalencia. A més, es representen com a combinació d'una inversa interior i la inversa de Moore­ Penrose. Aquesta és la raó per la qual se les ha denominades invernes lMP i MPl. De manera similar, es defineixen les inverses 2MP i els seus duals, les MP2. M. Mehdipour i A. Salemi van definir en [53] la inversa CMP d'una matriu quadrada A posant l'emfasi en la part core de la propia matriu A. En aquesta tesi doctoral es realitza una analisi similar, centrant l'enfocament en les inverses 2MP. Sorgeixen d'aquesta manera les inverses generalitzades C2MP. En aquesta tesi es reprén l'estudi, començat a [45], de les propietats de l'ordre diamant en conjunts de matrius rectangulars. Comuna aplicació de les inverses generalitzades lMP i MPl, es defineixen dues noves relacions d'ordre en conjunts de matrius rectangulars. Finalment, es troba una altra caracterització de l'ordre diamant. Aquesta tesis esta organitzada en quatre capítols. En el Capítol 1 es desenvolupen alguns antecedents del tema de la tesi i es presenten els resultats preliminars necessaris per al desenvolupament de la resta dels capítols. En el Capítol 2 es presenten les classes de matrius GDMP i MPGD, es demostren propietats d'aquestes inverses i es descriu un algorisme per a trobar-les. El Capítol 3 es dedica a l'estudi d'uns certs projectors que permeten definir les classes d'inverses generalitzades lMP, MPl, 2MP i MP2. Particularitzant la inversa exterior considerada, es defineixen les inverses C2MP. A més, es presenten les inverses definides en aquesta tesi com a inverses amb espai rang i espai nul prescrit. Finalment, en el Capítol 4, amb la intenció d'estudiar una aplicació de la teoría d'inverses generalitzades, s'aprofundeix en l'estudi d'ordres parcials, proporcionant noves propietats de l'ordre diamant. També, es presenten i investiguen dues noves relacions d'ordre en el conjunt de matrius rectangulars i s'analitzen les seues propietats. Alguns dels resultats obtinguts en aquesta tesi poden trobar-se en [37, 38, 39, 40, 41]. / [EN] The Matrix Analysis provides with very useful tools for the Applied Mathematics. The theory of Generalized Inverse Matrices constitutes one of these tools. Its application is important for other areas of mathematics and other disciplines. In this PhD. thesis, new generalized inverses are defined and investigated, and new partial orders defined by sorne of them are found and characterized. Therefore, this PhD. thesis is based on two important areas: the Matrix Analysis and the Theory of Matrices, and the Algebra of Logic (Ordered Algebraic Structures). In the first part this PhD. thesis, a new kind of hybrid generalized inverse is defined and investigated, the GDMP-inverses (and their duals, the MPGD-inverses), in the setting of square matrices of an arbitrary index, as an extension of the DMP inverses to a more general class. In this PhD. thesis, generalized GDMP-inverses are introduced as a certain product of matrices that involve the G-Drazin inverse and the Moore-Penrose inverse. The pro­ perties are investigated by different methods and characterized from different points of view. As a complement, it is provided an algorithm to compute them, which also allows to find a G-Drazin inverse. The study of projectors is an important area in different branches of Mathematics and particularly in the Matrix Analysis. The theory of generalized inverses is used as a tool to analyze them and operate with them. In the second part of this PhD. thesis, the behaviour of certain oblique projectors defined by generalized inverses is studied. From the definition of an adequate equivalence relation in particular sets of complex matrices, a new class of generalized inverse matrices is introduced as the "simplest" representant of each class of equivalence. Besides, they are represented as a product of an inner inverse and the Moore-Penrose inverse. This is the reason why they have been named lMP and MPl inverses. Both the core inverse and the DMP inverse are expressed as an adequate product involving a specific outer inverse and the Moore-Penrose inverse. Similarly, the 2MP inverses and their duals, the MP2 inverses, are defined. M. Mehdipour and A. Salemi defined in [53] the CMP inverse of a square matrix A, emphasizing the care part of the A matrix itself. In this PhD. thesis, a similar analysis is done, focusing on the care part of 2MP inverses. In this way, the generalized C2MP inverses are investigated. The study of the diamond order properties in sets of rectangular matrices is inves­ tigated in this PhD. thesis. Two new order relations in sets of rectangular matrices are defined as an application of the generalized lMP and MPl inverses. Finally, another characterization of the diamond order is investigated in this PhD. thesis. This PhD. thesis is organized into four chapters. In Chapter 1, sorne introduction of the PhD. thesis topic are developed and the preliminary results needed for the development of the rest of the chapters are presented. In Chapter 2, the classes of GDMP and MPGD matrices are presented, properties of these inverses are proved and an algorithm to find them is described. Chapter 3 is focused on the study of certain projectors that allow to define the classes of generalized lMP, MPl, 2MP and MP2 inverses. When taking a particular case of outer inverse, the C2MP inverses are defined. Moreover, the inverses defined in this PhD. thesis are presented as inverses with prescribed range and null space. Finally, in Chapter 4, the partial orders are studied in more detail, providing new properties of the diamond order, with the purpose of studying an application of the theory of generalized inverses. Finally, two new order relations are presented and investigated in the set of rectangular matrices and their properties are analyzed. Sorne of the results obtained in this PhD. thesis can be found in [37, 38, 39, 40, 41]. / Hernández, MV. (2022). Matrices inversas generalizadas definidas mediante proyectores y su aplicación a órdenes parciales matriciales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/186007
8

研究Ferguson-Dirichlet過程和條件分配族相容性之新工具 / New tools for studying the Ferguson-Dirichlet process and compatibility of a family of conditionals

郭錕霖, Kuo,Kun Lin Unknown Date (has links)
單變量c-特徵函數已被證明可處理一些難以使用傳統特徵函數解決的問題, 在本文中,我們首先提出其反演公式,透過此反演公式,我們獲得(1)Dirichlet隨機向量之線性組合的機率密度函數;(2)以一些有趣測度為參數之Ferguson-Dirichlet過程其隨機動差的機率密度函數;(3)Ferguson-Dirichlet過程之隨機泛函的Lebesgue積分表示式。 本文給予對稱分配之多變量c-特徵函數的新性質,透過這些性質,我們證明在任何$n$維球面上之Ferguson-Dirichlet過程其隨機均值是一對稱分配,並且我們亦獲得其確切的機率密度函數,此外,我們將這些結果推廣至任何n維橢球面上。 我們亦探討條件分配相容性的問題,這個問題在機率理論與貝式計算上有其重要性,我們提出其充要條件。當給定相容的條件分配時,我們不但解決相關聯合分配唯一性的問題,而且也提供方法去獲得所有可能的相關聯合分配,我們亦給予檢驗相容性、唯一性及建構機率密度函數的演算法。 透過相容性的相關理論,我們提出完整且清楚地統合性貝氏反演公式理論,並建構可應用於一般測度空間的廣義貝氏反演公式。此外,我們使用廣義貝氏反演公式提供一個配適機率密度函數的演算法,此演算法沒有疊代演算法(如Gibbs取樣法)的收斂問題。 / The univariate c-characteristic function has been shown to be important in cases that are hard to manage using the traditional characteristic function. In this thesis, we first give its inversion formulas. We then use them to obtain (1) the probability density functions (PDFs) of a linear combination of the components of a Dirichlet random vector; (2) the PDFs of random functionals of a Ferguson-Dirichlet process with some interesting parameter measures; (3) a Lebesgue integral expression of any random functional of the Ferguson-Dirichlet process. New properties of the multivariate c-characteristic function with a spherical distribution are given in this thesis. With them, we show that the random mean of a Ferguson-Dirichlet process over a spherical surface in n dimensions has a spherical distribution on the n-dimensional ball. Moreover, we derive its exact PDF. Furthermore, we generalize this result to any ellipsoidal surface in n-space. We also study the issue of compatibility for specified conditional distributions. This issue is important in probability theory and Bayesian computations. Several necessary and sufficient conditions for the compatibility are provided. We also address the problem of uniqueness of the associated joint distribution when the given conditionals are compatible. In addition, we provide a method to obtain all possible joint distributions that have the given compatible conditionals. Algorithms for checking the compatibility and the uniqueness, and for constructing all associated densities are also given. Through the related compatibility theorems, we provide a fully and cleanly unified theory of inverse Bayes formula (IBF) and construct a generalized IBF (GIBF) that is applicable in the more general measurable space. In addition, using the GIBF, we provide a marginal density fitting algorithm, which avoids the problems of convergence in iterative algorithm such as the Gibbs sampler.
9

以最小平方法處理有限離散型條件分配相容性問題 / Addressing the compatibility issues of finite discrete conditionals by the least squares approach

李宛靜, Lee, Wan Ching Unknown Date (has links)
給定兩個有限離散型條件分配,我們可以去探討有關相容性及唯一性的問題。Tian et al.(2009)提出一個統合的方法,將相容性的問題轉換成具限制條件的線性方程系統(以邊際機率為未知數),並藉由 l_2-距離測量解之誤差,進而求出最佳解來。他們也提出了電腦數值計算法在檢驗相容性及唯一性時的準則。 由於 Tian et al.(2009)的方法是把邊際機率和為 1 的條件放置在線性方程系統中,從理論的觀點來看,我們認為該條件在此種做法下未必會滿足。因此,本文中將邊際機率和為 1 的條件從線性方程系統中抽離出來,放入限制條件中,再對修正後的問題求最佳解。 我們提出了兩個解決問題的方法:(一) LRG 法;(二) 干擾參數法。LRG 法是先不管機率值在 0 與 1 之間的限制,在邊際機率和為 1 的條件下,利用 Lagrange 乘數法導出解的公式,之後再利用 Rao-Ghangurde 法進行修正,使解滿足機率值在 0 與 1 之間的要求。干擾參數法是在 Lagrange 乘數法公式解中有關廣義逆矩陣的計算部份引進了微量干擾值,使近似的逆矩陣及解可快速求得。理論證明,引進干擾參數所增加的誤差不超過所選定的干擾值,易言之,由干擾參數法所求出的解幾近最佳解。故干擾參數法在處理相容性問題上,是非常實用、有效的方法。從進一步分析Lagrange 乘數法公式解的過程中,我們也發現了檢驗條件分配"理論"相容的充分條件。 最後,為了驗證 LRG 法與干擾參數法的可行性,我們利用 MATLAB 設計了程式來處理求解過程中的運算,並以 Tian et al.(2009)文中四個可涵蓋各種情況的範例來解釋說明處理的流程,同時將所獲得的結果和 Tian et al. 的結果做比較。 / Given two finite discrete conditional distributions, we could study the compatibility and uniqueness issues. Tian et al.(2009) proposed a unified method by converting the compatibility problem into a system of linear equations with constraints, in which marginal probability values are assumed unknown. It locates the optimum solution by means of the error of l_2 - discrepancy. They also provided criteria for determining the compatibility and uniqueness. Because the condition of sum of the marginal probability values being equal to one is in Tian et al.s’linear system, it might not be fulfilled by the optimum solution. By separating this condition from the linear system and adding into constraints, we would look for the optimum solution after modification. We propose two new methods: (1) LRG method and (2) Perturbation method. LRG method ignores the requirement of the probability values being between zero and one initially, it then uses the Lagrange multipliers method to derive the solution for a quadratic optimization problem subject to the sum of the marginal probability values being equal to 1. Afterward we use the Rao-Ghangurde method to modify the computed value to meet the requirement. The perturbation method introduces tiny perturbation parameter in finding the generalized inverse for the optimum solution obtained by the Lagrange multipliers method. It can be shown that the increased error is less than the perturbation value introduced. Thus it is a practical and effective method in dealing with compatibility issues. We also find some sufficient conditions for checking the compatibility of conditional distributions from further analysis on the solution given by Lagrange multipliers method. To show the feasibilities of LRG method and Perturbation method, we use MATLAB to device a program to conduct them. Several numerical examples raised by Tian et al.(2009) in their article are applied to illustrate our methods. Some comparisons with their method are also presented.
10

A Study of Gamma Distributions and Some Related Works

Chou, Chao-Wei 11 May 2004 (has links)
Characterization of distributions has been an important topic in statistical theory for decades. Although there have been many well known results already developed, it is still of great interest to find new characterizations of commonly used distributions in application, such as normal or gamma distribution. In practice, sometimes we make guesses on the distribution to be fitted to the data observed, sometimes we use the characteristic properties of those distributions to do so. In this paper we will restrict our attention to the characterizations of gamma distribution as well as some related studies on the corresponding parameter estimation based on the characterization properties. Some simulation studies are also given.

Page generated in 0.0172 seconds