• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 4
  • 2
  • 2
  • Tagged with
  • 88
  • 88
  • 68
  • 41
  • 37
  • 34
  • 30
  • 30
  • 29
  • 28
  • 28
  • 26
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fifty Years of Information Management Research: A Conceptual Structure Analysis using Structural Topic Modeling

Sharma, A., Rana, Nripendra P., Nunkoo, R. 10 January 2021 (has links)
Yes / Information management is the management of organizational processes, technologies, and people which collectively create, acquire, integrate, organize, process, store, disseminate, access, and dispose of the information. Information management is a vast, multi-disciplinary domain that syndicates various subdomains and perfectly intermingles with other domains. This study aims to provide a comprehensive overview of the information management domain from 1970 to 2019. Drawing upon the methodology from statistical text analysis research, this study summarizes the evolution of knowledge in this domain by examining the publication trends as per authors, institutions, countries, etc. Further, this study proposes a probabilistic generative model based on structural topic modeling to understand and extract the latent themes from the research articles related to information management. Furthermore, this study graphically visualizes the variations in the topic prevalences over the period of 1970 to 2019. The results highlight that the most common themes are data management, knowledge management, environmental management, project management, service management, and mobile and web management. The findings also identify themes such as knowledge management, environmental management, project management, and social communication as academic hotspots for future research.
22

Bayesian Generative Modeling of Complex Dynamical Systems

Guan, Jinyan January 2016 (has links)
This dissertation presents a Bayesian generative modeling approach for complex dynamical systems for emotion-interaction patterns within multivariate data collected in social psychology studies. While dynamical models have been used by social psychologists to study complex psychological and behavior patterns in recent years, most of these studies have been limited by using regression methods to fit the model parameters from noisy observations. These regression methods mostly rely on the estimates of the derivatives from the noisy observation, thus easily result in overfitting and fail to predict future outcomes. A Bayesian generative model solves the problem by integrating the prior knowledge of where the data comes from with the observed data through posterior distributions. It allows the development of theoretical ideas and mathematical models to be independent of the inference concerns. Besides, Bayesian generative statistical modeling allows evaluation of the model based on its predictive power instead of the model residual error reduction in regression methods to prevent overfitting in social psychology data analysis. In the proposed Bayesian generative modeling approach, this dissertation uses the State Space Model (SSM) to model the dynamics of emotion interactions. Specifically, it tests the approach in a class of psychological models aimed at explaining the emotional dynamics of interacting couples in committed relationships. The latent states of the SSM are composed of continuous real numbers that represent the level of the true emotional states of both partners. One can obtain the latent states at all subsequent time points by evolving a differential equation (typically a coupled linear oscillator (CLO)) forward in time with some known initial state at the starting time. The multivariate observed states include self-reported emotional experiences and physiological measurements of both partners during the interactions. To test whether well-being factors, such as body weight, can help to predict emotion-interaction patterns, we construct functions that determine the prior distributions of the CLO parameters of individual couples based on existing emotion theories. Besides, we allow a single latent state to generate multivariate observations and learn the group-shared coefficients that specify the relationship between the latent states and the multivariate observations. Furthermore, we model the nonlinearity of the emotional interaction by allowing smooth changes (drift) in the model parameters. By restricting the stochasticity to the parameter level, the proposed approach models the dynamics in longer periods of social interactions assuming that the interaction dynamics slowly and smoothly vary over time. The proposed approach achieves this by applying Gaussian Process (GP) priors with smooth covariance functions to the CLO parameters. Also, we propose to model the emotion regulation patterns as clusters of the dynamical parameters. To infer the parameters of the proposed Bayesian generative model from noisy experimental data, we develop a Gibbs sampler to learn the parameters of the patterns using a set of training couples. To evaluate the fitted model, we develop a multi-level cross-validation procedure for learning the group-shared parameters and distributions from training data and testing the learned models on held-out testing data. During testing, we use the learned shared model parameters to fit the individual CLO parameters to the first 80% of the time points of the testing data by Monte Carlo sampling and then predict the states of the last 20% of the time points. By evaluating models with cross-validation, one can estimate whether complex models are overfitted to noisy observations and fail to generalize to unseen data. I test our approach on both synthetic data that was generated by the generative model and real data that was collected in multiple social psychology experiments. The proposed approach has the potential to model other complex behavior since the generative model is not restricted to the forms of the underlying dynamics.
23

Statistical Models for Human Motion Synthesis / Modèles statistiques pour la synthèse du mouvement humain

Wang, Qi 09 July 2018 (has links)
Cette thèse porte sur la synthèse de séquences de motion capture avec des modèles statistiques. La synthèse de ce type de séquences est une tâche pertinente pour des domaines d'application divers tels que le divertissement, l'interaction homme-machine, la robotique, etc. Du point de vue de l'apprentissage machine, la conception de modèles de synthèse consiste à apprendre des modèles génératifs, ici pour des données séquentielles. Notre point de départ réside dans deux problèmes principaux rencontrés lors de la synthèse de données de motion capture, assurer le réalisme des positions et des mouvements, et la gestion de la grande variabilité dans ces données. La variabilité vient d'abord des caractéristiques individuelles, nous ne bougeons pas tous de la même manière mais d'une façon qui dépend de notre personnalité, de notre sexe, de notre âge de notre morphologie, et de facteurs de variation plus court terme tels que notre état émotionnel, que nous soyons fatigués, etc.Une première partie présente des travaux préliminaires que nous avons réalisés en étendant des approches de l'état de l'art basées sur des modèles de Markov cachés et des processus gaussiens pour aborder les deux problèmes principaux liés au réalisme et à la variabilité. Nous décrivons d'abord une variante de modèles de Markov cachés contextuels pour gérer la variabilité dans les données en conditionnant les paramètres des modèles à une information contextuelle supplémentaire telle que l'émotion avec laquelle un mouvement a été effectué. Nous proposons ensuite une variante d'une méthode de l'état de l'art utilisée pour réaliser une tâche de synthèse de mouvement spécifique appelée Inverse Kinematics, où nous exploitons les processus gaussiens pour encourager le réalisme de chacune des postures d'un mouvement généré. Nos résultats montrent un certain potentiel de ces modèles statistiques pour la conception de systèmes de synthèse de mouvement humain. Pourtant, aucune de ces technologies n'offre la flexibilité apportée par les réseaux de neurones et la récente révolution de l'apprentissage profond et de l'apprentissage Adversarial que nous abordons dans la deuxième partie.La deuxième partie de la thèse décrit les travaux que nous avons réalisés avec des réseaux de neurones et des architectures profondes. Nos travaux s'appuient sur la capacité des réseaux neuronaux récurrents à traiter des séquences complexes et sur l'apprentissage Adversarial qui a été introduit très récemment dans la communauté du Deep Learning pour la conception de modèles génératifs performants pour des données complexes, notamment images. Nous proposons une première architecture simple qui combine l'apprentissage Adversarial et des autoencodeurs de séquences, qui permet de mettre au point des systèmes performants de génération aléatoire de séquences réalistes de motion capture. A partir de cette architecture de base, nous proposons plusieurs variantes d'architectures neurales conditionnelles qui permettent de concevoir des systèmes de synthèse que l'on peut contrôler dans une certaine mesure en fournissant une information de haut niveau à laquelle la séquence générée doit correspondre, par exemple l'émotion avec laquelle une activité est réalisée. Pour terminer nous décrivons une dernière variante qui permet de réaliser de l'édition de séquences de motion capture, où le système construit permet de générer une séquence dans le style d'une autre séquence, réelle. / This thesis focuses on the synthesis of motion capture data with statistical models. Motion synthesis is a task of interest for important application fields such as entertainment, human-computer interaction, robotics, etc. It may be used to drive a virtual character that can be involved in the applications of the virtual reality, animation films or computer games. This thesis focuses on the use of statistical models for motion synthesis with a strong focus on neural networks. From the machine learning point of view designing synthesis models consists in learning generative models. Our starting point lies in two main problems one encounters when dealing with motion capture data synthesis, ensuring realism of postures and motion, and handling the large variability in the synthesized motion. The variability in the data comes first from core individual features, we do not all move the same way but accordingly to our personality, our gender, age, and morphology etc. Moreover there are other short term factors of variation like our emotion, the fact that we are interacting with somebody else, that we are tired etc. Data driven models have been studied for generating human motion for many years. Models are learned from labelled datasets where motion capture data are recorded while actors are performed various activities like walking, dancing, running, etc. Traditional statistical models such as Hidden Markov Models, Gaussian Processes have been investigated for motion synthesis, demonstrating strengths but also weaknesses. Our work focuses in this line of research and concerns the design of generative models for sequences able to take into account some contextual information, which will represent the factors of variation. A first part of the thesis present preliminary works that we realised by extending previous approaches relying on Hidden Markov Models and Gaussian Processes to tackle the two main problems related to realism and variability. We first describe an attempt to extend contextual Hidden Markov Models for handling variability in the data by conditioning the parameters of the models to an additional contextual information such as the emotion which which a motion was performed. We then propose a variant of a traditional method for performing a specific motion synthesis task called Inverse Kinematics, where we exploit Gaussian Processes to enforce realism of each of the postures of a generated motion. These preliminary results show some potential of statistical models for designing human motion synthesis systems. Yet none of these technologies offers the flexibility brought by neural networks and the recent deep learning revolution.The second part of the thesis describes the works we realized with neural networks and deep architectures. It builds on recurrent neural networks for dealing with sequences and on adversarial learning which was introduced very recently in the deep learning community for designing accurate generative models for complex data. We propose a simple system as a basis synthesis architecture, which combines adversarial learning with sequence autoencoders, and that allows randomly generating realistic motion capture sequences. Starting from this architecture we design few conditional neural models that allow to design synthesis systems that one can control up to some extent by either providing a high level information that the generated sequence should match (e.g. the emotion) or by providing a sequence in the style of which a sequence should be generated.
24

A general purpose artificial intelligence framework for the analysis of complex biological systems

Kalantari, John I. 15 December 2017 (has links)
This thesis encompasses research on Artificial Intelligence in support of automating scientific discovery in the fields of biology and medicine. At the core of this research is the ongoing development of a general-purpose artificial intelligence framework emulating various facets of human-level intelligence necessary for building cross-domain knowledge that may lead to new insights and discoveries. To learn and build models in a data-driven manner, we develop a general-purpose learning framework called Syntactic Nonparametric Analysis of Complex Systems (SYNACX), which uses tools from Bayesian nonparametric inference to learn the statistical and syntactic properties of biological phenomena from sequence data. We show that the models learned by SYNACX offer performance comparable to that of standard neural network architectures. For complex biological systems or processes consisting of several heterogeneous components with spatio-temporal interdependencies across multiple scales, learning frameworks like SYNACX can become unwieldy due to the the resultant combinatorial complexity. Thus we also investigate ways to robustly reduce data dimensionality by introducing a new data abstraction. In particular, we extend traditional string and graph grammars in a new modeling formalism which we call Simplicial Grammar. This formalism integrates the topological properties of the simplicial complex with the expressive power of stochastic grammars in a computation abstraction with which we can decompose complex system behavior, into a finite set of modular grammar rules which parsimoniously describe the spatial/temporal structure and dynamics of patterns inferred from sequence data.
25

Multi-Label Latent Spaces with Semi-Supervised Deep Generative Models

Rastgoufard, Rastin 18 May 2018 (has links)
Expert labeling, tagging, and assessment are far more costly than the processes of collecting raw data. Generative modeling is a very powerful tool to tackle this real-world problem. It is shown here how these models can be used to allow for semi-supervised learning that performs very well in label-deficient conditions. The foundation for the work in this dissertation is built upon visualizing generative models' latent spaces to gain deeper understanding of data, analyze faults, and propose solutions. A number of novel ideas and approaches are presented to improve single-label classification. This dissertation's main focus is on extending semi-supervised Deep Generative Models for solving the multi-label problem by proposing unique mathematical and programming concepts and organization. In all naive mixtures, using multiple labels is detrimental and causes each label's predictions to be worse than models that utilize only a single label. Examining latent spaces reveals that in many cases, large regions in the models generate meaningless results. Enforcing a priori independence is essential, and only when applied can multi-label models outperform the best single-label models. Finally, a novel learning technique called open-book learning is described that is capable of surpassing the state-of-the-art classification performance of generative models for multi-labeled, semi-supervised data sets.
26

Deep generative models for natural language processing

Miao, Yishu January 2017 (has links)
Deep generative models are essential to Natural Language Processing (NLP) due to their outstanding ability to use unlabelled data, to incorporate abundant linguistic features, and to learn interpretable dependencies among data. As the structure becomes deeper and more complex, having an effective and efficient inference method becomes increasingly important. In this thesis, neural variational inference is applied to carry out inference for deep generative models. While traditional variational methods derive an analytic approximation for the intractable distributions over latent variables, here we construct an inference network conditioned on the discrete text input to provide the variational distribution. The powerful neural networks are able to approximate complicated non-linear distributions and grant the possibilities for more interesting and complicated generative models. Therefore, we develop the potential of neural variational inference and apply it to a variety of models for NLP with continuous or discrete latent variables. This thesis is divided into three parts. Part I introduces a <b>generic variational inference framework</b> for generative and conditional models of text. For continuous or discrete latent variables, we apply a continuous reparameterisation trick or the REINFORCE algorithm to build low-variance gradient estimators. To further explore Bayesian non-parametrics in deep neural networks, we propose a family of neural networks that parameterise categorical distributions with continuous latent variables. Using the stick-breaking construction, an unbounded categorical distribution is incorporated into our deep generative models which can be optimised by stochastic gradient back-propagation with a continuous reparameterisation. Part II explores <b>continuous latent variable models for NLP</b>. Chapter 3 discusses the Neural Variational Document Model (NVDM): an unsupervised generative model of text which aims to extract a continuous semantic latent variable for each document. In Chapter 4, the neural topic models modify the neural document models by parameterising categorical distributions with continuous latent variables, where the topics are explicitly modelled by discrete latent variables. The models are further extended to neural unbounded topic models with the help of stick-breaking construction, and a truncation-free variational inference method is proposed based on a Recurrent Stick-breaking construction (RSB). Chapter 5 describes the Neural Answer Selection Model (NASM) for learning a latent stochastic attention mechanism to model the semantics of question-answer pairs and predict their relatedness. Part III discusses <b>discrete latent variable models</b>. Chapter 6 introduces latent sentence compression models. The Auto-encoding Sentence Compression Model (ASC), as a discrete variational auto-encoder, generates a sentence by a sequence of discrete latent variables representing explicit words. The Forced Attention Sentence Compression Model (FSC) incorporates a combined pointer network biased towards the usage of words from source sentence, which significantly improves the performance when jointly trained with the ASC model in a semi-supervised learning fashion. Chapter 7 describes the Latent Intention Dialogue Models (LIDM) that employ a discrete latent variable to learn underlying dialogue intentions. Additionally, the latent intentions can be interpreted as actions guiding the generation of machine responses, which could be further refined autonomously by reinforcement learning. Finally, Chapter 8 summarizes our findings and directions for future work.
27

Reinforcement Learning in Eco-driving for Connected and Automated Vehicles

Zhu, Zhaoxuan January 2021 (has links)
No description available.
28

Modèles génératifs profonds pour la génération interactive de musique symbolique / Interactive deep generative models for symbolic music

Hadjeres, Gaëtan 07 June 2018 (has links)
Ce mémoire traite des modèles génératifs profonds appliqués à la génération automatique de musique symbolique. Nous nous attacherons tout particulièrement à concevoir des modèles génératifs interactifs, c'est-à-dire des modèles instaurant un dialogue entre un compositeur humain et la machine au cours du processus créatif. En effet, les récentes avancées en intelligence artificielle permettent maintenant de concevoir de puissants modèles génératifs capables de générer du contenu musical sans intervention humaine. Il me semble cependant que cette approche est stérile pour la production artistique dans le sens où l'intervention et l'appréciation humaines en sont des piliers essentiels. En revanche, la conception d'assistants puissants, flexibles et expressifs destinés aux créateurs de contenus musicaux me semble pleine de sens. Que ce soit dans un but pédagogique ou afin de stimuler la créativité artistique, le développement et le potentiel de ces nouveaux outils de composition assistée par ordinateur sont prometteurs. Dans ce manuscrit, je propose plusieurs nouvelles architectures remettant l'humain au centre de la création musicale. Les modèles proposés ont en commun la nécessité de permettre à un opérateur de contrôler les contenus générés. Afin de rendre cette interaction aisée, des interfaces utilisateurs ont été développées ; les possibilités de contrôle se manifestent sous des aspects variés et laissent entrevoir de nouveaux paradigmes compositionnels. Afin d'ancrer ces avancées dans une pratique musicale réelle, je conclue cette thèse sur la présentation de quelques réalisations concrètes (partitions, concerts) résultant de l'utilisation de ces nouveaux outils. / This thesis discusses the use of deep generative models for symbolic music generation. We will be focused on devising interactive generative models which are able to create new creative processes through a fruitful dialogue between a human composer and a computer. Recent advances in artificial intelligence led to the development of powerful generative models able to generate musical content without the need of human intervention. I believe that this practice cannot be thriving in the future since the human experience and human appreciation are at the crux of the artistic production. However, the need of both flexible and expressive tools which could enhance content creators' creativity is patent; the development and the potential of such novel A.I.-augmented computer music tools are promising. In this manuscript, I propose novel architectures that are able to put artists back in the loop. The proposed models share the common characteristic that they are devised so that a user can control the generated musical contents in a creative way. In order to create a user-friendly interaction with these interactive deep generative models, user interfaces were developed. I believe that new compositional paradigms will emerge from the possibilities offered by these enhanced controls. This thesis ends on the presentation of genuine musical projects like concerts featuring these new creative tools.
29

Contributions to generative models and their applications

Che, Tong 10 1900 (has links)
Generative models are a large class of machine learning models for unsupervised learning. They have various applications in machine learning and artificial intelligence. In this thesis, we discuss many aspects of generative models and their applications to other machine learning problems. In particular, we discuss several important topics in generative models, including how to stabilize discrete GAN training with importance sampling, how to do better sampling from GANs using a connection with energy-based models, how to better train auto-regressive models with the help of an energy-based model formulation, as well as two applications of generative models to other machine learning problems, one about residual networks, the other about safety verification. / Les modèles génératifs sont une grande classe de modèles d’apprentissage automatique pour l’apprentissage non supervisé. Ils ont diverses applications dans l’apprentissage automatique et l’intelligence artificielle. Dans cette thèse, nous discutons de nombreux aspects des modèles génératifs et de leurs applications à d’autres problèmes d’apprentissage automatique. En particulier, nous discutons de plusieurs sujets importants dans les modèles génératifs, y compris comment stabiliser la formation GAN discrète avec un échantillonnage d’importance, comment faire un meilleur échantillonnage à partir de GAN en utilisant une connexion avec des modèles basés sur l’énergie, comment mieux former des modèles auto-régressifs avec l’aide d’une formulation de modèle basée sur l’énergie, ainsi que deux applications de modèles génératifs à d’autres problèmes d’apprentissage automatique, l’une sur les réseaux résiduels, l’autre sur la vérification de la sécurité.
30

Cooperative versus Adversarial Learning: Generating Political Text

Jonsson, Jacob January 2018 (has links)
This thesis aims to evaluate the current state of the art for unconditional text generation and compare established models with novel approaches in the task of generating texts, after being trained on texts written by political parties from the Swedish Riksdag. First, the progression of language modeling from n-gram models and statistical models to neural network models is presented. This is followed by theoretical arguments for the development of adversarial training methods,where a generator neural network tries to fool a discriminator network, trained to distinguish between real and generated sentences. One of the methods in the research frontier diverges from the adversarial idea and instead uses cooperative training, where a mediator network is trained instead of a discriminator. The mediator is then used to estimate a symmetric divergence measure between the true distribution and the generator’s distribution, which is to be minimized in training. A set of experiments evaluates the performance of cooperative training and adversarial training, and finds that they both have advantages and disadvantages. In the experiments, the adversarial training increases the quality of generated texts, while the cooperative training increases the diversity. The findings are in line with the theoretical expectation. / Denna uppsats utvärderar några nyligen föreslagna metoder för obetingad textgenerering, baserade på s.k. “Generative Adversarial Networks” (GANs). Den jämför etablerade modeller med nya metoder för att generera text, efter att ha tränats på texter från de svenska Riksdagspartierna. Utvecklingen av språkmodellering från n-gram-modeller och statistiska modeller till modeller av neurala nätverk presenteras. Detta följs upp av teoretiska argument för utvecklingen av GANs, för vilka ett generatornätverk försöker överlista ett diskriminatornätverk, som tränas skilja mellan riktiga och genererade meningar. En av de senaste metoderna avviker från detta angreppssätt och introducerar istället kooperativ träning, där ett mediatornätverk tränas istället för en diskriminator. Mediatorn används sedan till att uppskatta ett symmetriskt divergensmått mellan den sanna distributionen och generatorns distribution, vilket träningen syftar till att minimera. En serie experiment utvärderar hur GANs och kooperativ träning presterar i förhållande till varandra, och finner att de båda har för- och nackdelar. I experimenten ökar GANs kvaliteten på texterna som genereras, medan kooperativ träning ökar mångfalden. Resultaten motsvarar vad som kan förväntas teoretiskt.

Page generated in 0.158 seconds