• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degenerations of classical square matrices and their determinantal structure

Medeiros, Rainelly Cunha de 10 March 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-25T13:37:53Z No. of bitstreams: 1 arquivototal.pdf: 1699241 bytes, checksum: 2f092c650c435ae41ec42c261fd9c3af (MD5) / Made available in DSpace on 2017-08-25T13:37:53Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1699241 bytes, checksum: 2f092c650c435ae41ec42c261fd9c3af (MD5) Previous issue date: 2017-03-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In thisthesis,westudycertaindegenerations/specializationsofthegenericsquare matrix overa eld k of characteristiczeroalongitsmainrelatedstructures,suchthe determinantofthematrix,theidealgeneratedbyitspartialderivatives,thepolarmap de ned bythesederivatives,theHessianmatrixandtheidealofsubmaximalminorsof the matrix.Thedegenerationtypesofthegenericsquarematrixconsideredhereare: (1) degenerationby\cloning"(repeating)avariable;(2)replacingasubsetofentriesby zeros, inastrategiclayout;(3)furtherdegenerationsoftheabovetypesstartingfrom certain specializationsofthegenericsquarematrix,suchasthegenericsymmetric matrix andthegenericsquareHankelmatrix.Thefocusinallthesedegenerations is intheinvariantsdescribedabove,highlightingonthehomaloidalbehaviorofthe determinantofthematrix.Forthis,weemploytoolscomingfromcommutativealgebra, with emphasisonidealtheoryandsyzygytheory. / Nesta tese,estudamoscertasdegenera c~oes/especializa c~oesdamatrizquadradagen erica sobre umcorpo k de caracter sticazero,aolongodesuasprincipaisestruturasrela- cionadas, taiscomoodeterminantedamatriz,oidealgeradoporsuasderivadasparci- ais, omapapolarde nidoporessasderivadas,amatrizHessianaeoidealdosmenores subm aximosdamatriz.Ostiposdedegenera c~aodamatrizquadradagen ericacon- siderados aquis~ao:(1)degenera c~aopor\clonagem"(repeti c~ao)deumavari avel;(2) substitui c~aodeumsubconjuntodeentradasporzeros,emumadisposi c~aoestrat egica; (3) outrasdegenera c~oesdostiposacimapartindodecertasespecializa c~oesdamatriz quadrada gen erica,taiscomoamatrizgen ericasim etricaeamatrizquadradagen erica de Hankel.Ofocoemtodasessasdegenera c~oes enosinvariantesdescritosacima, com destaqueparaocomportamentohomaloidaldodeterminantedamatriz.Paratal, empregamos ferramentasprovenientesda algebracomutativa,com^enfasenateoriade ideais enateoriadesiz gias.

Page generated in 0.0736 seconds