• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GENETIC CONTROL OF EYE AND CENTRAL NERVOUS SYSTEM DEVELOPMENT

Carbe, Christian J. 08 July 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Aniridia, a congenital ocular disorder caused by haploinsufficiency of transcription factor PAX6, is characterized by complete or partial iris hypoplasia with associated foveal hypoplasia. Brain imaging performed in patients heterozygous for PAX6 mutations often reveal absence of the brain anterior or posterior commissure, absence of the pineal gland, and a present but reduced in size corpus callosum. Renal coloboma syndrome, another autosomal dominant inherited disease, is characterized by hypodysplastic kidneys and optic nerve defects, and is caused by haploinsufficiency of transcription factor PAX2. In the first part of this thesis we investigated the role of these Pax genes in neural development, by generating an allelic series of knock-in models at the Pax6 locus. We showed that Pax6(5a) and Pax2 could not replace Pax6 for its auto-regulation in lens induction or for neural differentiation in retina. In brain development, however, we demonstrated that cell proliferation in the cerebral cortex and dorsoventral patterning of the telencephalon and neural tube was partially rescued in either knock-in mutant. We believe our novel findings not only reveal Pax-protein functional specificity during neural development, but may also be utilized to understand the aberrant molecular mechanism that result in aniridia and/or renal coloboma syndrome. Aphakia (lack of lens) is a rare human congenital disorder with its genetic etiology largely unknown. In the second part of this thesis, we show that homozygous deletion of Nf1, the Ras GTPase gene underlying human neurofibromatosis type 1 syndrome, caused lens dysgenesis in mouse. While early lens specification proceeded normally in Nf1 mutants, lens induction was disrupted due to deficient cell proliferation. Further analysis showed that ERK signaling was initially elevated in invaginating lens placode, but by lens vesicle stage, Ras signaling antagonist Sprouty2 was up regulated, followed by rapid decrease in ERK phosphorylation. Only after intraperitoneal treatment of U0126, an inhibitor of ERK phosphorylation, was lens development restored in Nf1 mutants. Hyperactive RAS-MAPK signaling is known to cause neuro-cardiofacial-cutaneous (NCFC) syndromes in human. As a member of NCFC family genes, Nf1 represents the first example that attenuation of Ras-MAPK kinase signaling pathway is essential for normal lens development.
2

Transcriptional Regulation By A Biotin Starvation- And Methanol-Inducible Zinc Finger Protein In The Methylotrophic Yeast, Pichia Pastoris

Nallani, Vijay Kumar 11 1900 (has links) (PDF)
Pichia pastoris, a methylotrophic yeast is widely used for recombinant protein production. It has a well characterized methanol utilization (MUT) pathway, the enzymes of which are induced when cells are cultured in the presence of methanol. In this study, we have identified an unannotated zinc finger protein, which was subsequently named ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) and characterized its function. ROP expression is induced in P. pastoris cells cultured in biotin depleted glucose ammonium medium as well as a medium containing methanol as the sole source of carbon. In glucose-abundant, biotin depleted cultures, ROP induces the expression of a number of genes including that encoding PEPCK. Interestingly, a strain in which the gene encoding ROP is deleted (ΔROP) exhibits biotin-independent growth. Based on a number of studies, it was proposed that the ability of ΔROP to grow in the absence of biotin is due to the activation of a pyruvate carboxylase-independent pathway of oxaloacetate biosynthesis. It was also proposed that PEPCK, which normally functions as a gluconeogenic enzyme, may act as an anaplerotic enzyme involved in the synthesis of oxaloacetate. ROP was shown to be a key regulator of methanol metabolism when P. pastoris cells are cultured in YPM medium containing yeast extract, peptone and methanol but not YNBM medium containing yeast nitrogen base and methanol. In P. pastoris cells cultured in YPM, ROP functions as a transcriptional repressor of genes encoding key enzymes of the methanol metabolism such as the alcohol oxidase I. (AOXI). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion while overexpression of ROP results in repression of AOXI and retardation of growth of P. pastoris cultured in YPM medium. Subcellular localization studies indicate that ROP translocates from cytosol to nucleus in cells cultured in YPM but not YNBM. To understand the mechanism of action of ROP, we examined its DNA-binding specificity. The DNA-binding domain of ROP shares 57% amino acid identity with that of Mxr1p, a master regulator of genes of methanol metabolism. We demonstrate that the DNA-binding specificity of ROP is similar to that of Mxr1p and both proteins compete with each other for binding to AOXI promoter sequences. Thus, transcriptional interference due to competition between Mxr1p and ROP for binding to the same promoter sequences is likely to be the mechanism by which ROP represses AOXI expression in vivo. Mxr1p and ROP are examples of transcription factors which exhibit the same DNA-binding specificity but regulate gene expression in an antagonistic fashion.

Page generated in 0.102 seconds