• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 68
  • 16
  • 13
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 236
  • 236
  • 70
  • 70
  • 69
  • 31
  • 25
  • 23
  • 21
  • 21
  • 19
  • 18
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multilocus and single locus minisatellite DNA polymorphism in brown trout (Salmo trutta L.) populations

Prodöhl, Paulo A. January 1993 (has links)
No description available.
22

Y chromosome haplotypes and Spanish surnames

Martinez Cadenas, Conrado January 2011 (has links)
In most societies, surnames are passed down from fathers to sons, just like the Y chromosome. It follows that, theoretically, men sharing the same surnames would also be expected to share related Y chromosomes. Previous investigations have explored such relationships but most data has been collected so far only from the British Isles. In order to provide additional in sights into the con-elation between surnames and Y chromosomes, this study focuses on the Spanish population and investigates Y chromosome SNP/STR variation by analysing a total of 1,766 DNA samples from unrelated Spanish male volunteers belonging to 37 surnames and 355 controls. The results suggest that the degree of coancestry within surnames is highly dependent on surname frequency. Within-surname genetic variation, as measured by different statistics, con-elates well with surname frequency, though a few exceptions are found. In addition, geographic distance between the individuals' place of origin influences Significantly the con-elation between Y chromosome and surnames: men with the same surname tend to have more similar Y chromosomes if their paternal grandfathers were born geographically close to each other. Therefore, it seems that Y chromosome coancestry within surnames is as much about surname frequency as it is about geographical proximity.
23

Gene expression in the leaves of super hybrid rice and identification of DNA markers for erect flag leaf. / CUHK electronic theses & dissertations collection

January 2003 (has links)
Dong Biao. / "October 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 184-201) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
24

Models for genetic analysis of polyploid plant species

Baldwin, Samantha, n/a January 2008 (has links)
A number of major crop species, such as allohexaploid wheat and autotetraploid potato are polyploid. Potato is the fourth most important crop in terms of production and has become an important food source in many countries. Therefore, the molecular analysis was directed towards investigating ways to develop markers to assist the potato breeding process; for example breeding for powdery scab disease resistance, and tolerance to cold induced sweetening. Polyploids have more possible genotypes per population, allele dosage effects and increased marker complexity compared to diploids. Potato is also outcrossing and therefore highly heterozygous. Various methods for detecting marker-trait associations including, linkage, quantitative trait locus (QTL) and association mapping were studied and protocols developed. A mapping population was produced and a number of traits were measured including powdery scab resistance. Powdery scab disease assays were carried out over six seasons and markers associated with disease resistance were identified. Markers associated with resistance to powdery scab were identified on chromosomes I, IV, V, VI, VIII and IX using analysis of variance (ANOVA). Linkage maps were produced for each parent of the population and QTL associated with resistance and susceptibility to disease were identified using interval mapping, which revealed QTL on chromosomes II, V, VII , VIII, IX and an unanchored linkage group. QTL were detected across years on regions of chromosomes VIII and IX. These QTL results had some overlap with the marker-trait associations that were identified using ANOVA analysis. Another marker identification technique was tested, known as association or linkage disequilibrium mapping. Alleles of candidate genes were tested for association with cold-induced sweetening using a germplasm collection. The alleles identified as important were of the apoplastic invertase and UGPase genes and a unique interaction between alleles of the apoplastic invertase and apoplastic invertase inhibitor was also detected. This thesis describes the first study into the genetics of powdery scab resistance and the markers identified as associated with resistance will be validated for use in a marker-assisted selection (MAS) programme. The tools and resources developed as part of this thesis are vital to the potato breeding programme that requires the identification of associated molecular markers.
25

Dissecting variation in tomato fruit color quality through digital phenotyping and genetic mapping

Darrigues, Audrey. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 164-176).
26

Evolutionary genetics of Atlantic salmon (Salmo salar L.) : molecular markers and applications /

Vasemägi, Anti. January 2004 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2004. / Thesis documentation sheet inserted. Appendix reprints five manuscripts and papers co-authored with others. Includes bibliographical references. Also issued electronically via World Wide Web in PDF format; online version lacks appendix.
27

Association analyses of SNPs in candidate genes with body fat deposition and carcass merit traits in beef cattle

Islam, Khandker Khaldun. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on Dec. 29, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Animal Science, Department of Agricultural, Food and Nutritional Science, University of Alberta." Includes bibliographical references.
28

An analysis of factors related to virulence in babesia bovis /

Nevils, Melissa A. January 2001 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2001. / "August 2001." Typescript. Vita. Includes bibliographical references (leaves 96-103). Also available on the Internet.
29

An analysis of factors related to virulence in babesia bovis

Nevils, Melissa A. January 2001 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 96-103). Also available on the Internet.
30

Identification and characterization of genetic markers and metabolic pathways controlling net feed efficiency in beef cattle.

Naik, Madan Bhaskar January 2008 (has links)
Title page, table of contents and abstract only. The complete thesis in print form is available from the University of Adelaide Library. / Net feed intake or residual feed intake is the feed intake of an animal after adjustment for its average weight and weight gain while on the feed test. High net feed efficiency (NFE) animals have a low net feed intake, so the aim is to select animals that have high net feed efficiency in order to reduce the 70% expenditure for feed costs. Thus far, very few studies have been undertaken on beef cattle to identify genetic markers for NFE and to understand the molecular genetics of feed intake regulation and energy balance. Therefore, in an attempt to identify genes and metabolic pathways controlling feed efficiency in beef cattle, three different experimental approaches were taken herein: a) linkage and linkage disequilibrium quantitative trait loci (QTL) mapping for net feed intake in Lirnousin x Jersey animals, b) mitochondrial oxidative phosphorylation enzyme assays in high and low NFE cattle, and c) 2-dimensional fluorescent gel electrophoresis (DIGE) proteomics analysis of mitochondrial proteins. For the cattle QTL mapping, the results from a previous trial were utilized. In the trial, a double back-cross design was employed using two extremely divergent Bos taurus breeds [Jersey (J) dairy breed and Limousin (L) beef breed]. These breeds known to differ in many traits including carcass composition, fat colour, body size, and meat tenderness. Three first cross (F1=X) sires were mated to pure Jersey or pure Limousin cows, creating in total 366 XJ and XL backcross progeny (range 120-156 progeny per sire). The amount of feed consumed each day during the 70-100 day test was recorded electronically for each animal. Feed intake data were processed by calculating the least-square means for each animal over the test period. The data for net feed intake were analysed using a QTL half-sib interval-mapping model. The interval linkage analysis of whole genome detected six suggestive QTL (BTA 1, 6, 8, 9, 16, and 20) segregating for NFE. Of these 6 QTL, 4 NFE QTL (BTA 1, 6,16, and 20) were homeologous to QTL for NFE observed in fullsib F2 families of mouse selection lines (Fenton 2004). After the NFE data were reanalysed for outliers, a QTL on BTA 11 was re-ranked and placed in the top 4 NFE QTL in terms of size of effect and statistical support, whereas the OTL on BTA 6 and BTA 16 had less support. Since the QTL on BTA 9 was not independent of growth, only 4 QTL (BTA 1, 8, 11 and 20) were targeted for further study herein. These NFE QTL were cross-validated in Angus NFE selection line animals in collaboration with Department of Primary Industries (DPI), Victoria by microsatellite linkage mapping. Two of the QTL on BTA 8 and 20 were confirmed and three other minor QTL on BTA 1, 11, and 20 were detected in the Angus animals. Based on this background information, a comparative genome mapping study was undertaken to identify candidate genes. Using the human and bovine genome Ensembl databases, 205 NFE candidate genes underlying the 4 major QTL regions (BTA 1, 8, 11, and 20) were identified and 61 were sequenced in the mapping F1 Limousin x Jersey mapping sires. In these 61 genes, 308 SNPs were discovered, of which 27 were potentially functional SNPs changing the amino acids. 84 SNPs were selected for genotyping and used for fine mapping the 4 QTL and for SNP association studies with NFE. From the positions of the analyses, the 4 NFE QTL were refined and 27 candidate SNPs in 20 genes showed strong association with NFE in the Limousin x Jersey animals. A ParAllele whole genome scan with a bovine 10K SNP chip was also performed on a subset of the Angus NFE selection line animals by DPI Victoria. 100 ParAllele SNPs had significant association with NFE in the Angus selection line animals. These ParAllele SNPs were tested in the Limousin x Jersey animals and 16 ParAllele SNPs were significantly associated with NFE. Four of these SNPs were located in the NFE QTL on BTA 1, 11 and 20. Based on the candidate genes underlying the 4 NFE QTL, 8 potential metabolic pathways contributing to NFE were identified. These metabolic pathways included mitochondrial oxidative phosphorylation and glucose turnover. Therefore, to determine if these specific pathways are indeed involved in net feed efficiency, oxidative phosphorylation enzyme assays and mitochondrial protein profiling were conducted on progeny from the Angus Trangie NFE selection line animals. Liver and skeletal muscle samples were obtained from extreme high and low NFE animals with an average phenotypic difference of 3 kg net feed intake per day. Using these liver and muscle samples, mitochondria were prepared and assessed. The mitochondrial preparations were assayed for enzyme activity of 3 complexes (Complex I, II and IV) involved in oxidative phosphorylation. The enzyme activities were measured spectrophotometrically and analysed by regression analysis. The activity of the liver mitochondrial Complex I was found to be significantly decreased in the high NFE animals compared to the low NFE animals (p<O.0001). The Complex II and IV activities were increased in the high NFE cattle, but the differences were not statistically significant. Using the mitochondrial preparations, 2-D polyacrylamide gel electrophoresis differential gel electrophoresis (2-D PAGE DIGE) was used to generate a mitochondrial protein profile for the high and low NFE Angus cattle. An ontological analysis based on the differentially expressed proteins (>1.5 fold difference) in the high vs. low NFE cattle unambiguously identified a total of 27 proteins in 6 physiologically different groups. The mitochondria proteomics results also confirmed the involvement of oxidative phosphorylation in net feed intake regulation. Eleven oxidative phosphorylation complex subunit proteins were found to be differentially expressed between the high and low NFE animals. Other differentially expressed proteins included six stress-related proteins, seven energy production and glucose turnover proteins, two protein turnover and nitrogen balance enzymes, and two proteins involved in mitochondrial DNA and protein biosynthesis. Four of the differentially expressed proteins were found in the NFE QTL regions. The results of these experiments provide a better understanding of the relationship between variation in feed efficiency and cellular energy production mechanisms in beef cattle. The proteomics and mitochondrial enzyme assay results suggest that energy metabolism and homeostasis may not be an efficient process in low NFE cattle. Lastly, a set of candidate SNPs are now available for the further validation as markers for selection of NFE in cattle breeding programs. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349183 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008

Page generated in 0.053 seconds