• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 16
  • 2
  • 1
  • Tagged with
  • 136
  • 136
  • 98
  • 49
  • 39
  • 31
  • 30
  • 26
  • 23
  • 23
  • 22
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An analysis of the S. cerevisiae RMI1 gene

Ashton, Thomas M. January 2010 (has links)
The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex, which is required for the maintenance of genome stability. The rmi1Δ deletion mutant has proven difficult to study because it exhibits very poor growth, and rapidly accumulates second site suppressor mutations. Furthermore, deletion of the putative HJ resolvase genes, MUS81-MUS81 or SLX1-SLX4 in rmi1Δ mutants causes synthetic lethality. In order to study phenotypes caused by loss of functional Rmi1, and to explore the genetic interactions between RMI1 and the MUS81, MUS81, SLX1 and SLX4 genes, a temperature sensitive mutant of RMI1 was isolated, named rmi1-1. Similar to rmi1Δ deletion mutants, rmi1-1 cells are highly sensitive to the DNA damaging agent, MMS and the replication inhibitor, HU. In addition, rmi1-1 mutants accumulate replication-associated branched DNA structures, and arrest in G<sub>2</sub>/M after a transient exposure to MMS. These cells are proficient in DNA damage checkpoint activation. Deletion of SLX1, SLX4, MUS81 or MUS81 in the rmi1-1 strain causes synthetic lethality, which is associated with cell cycle defects. Following a transient exposure to MMS, rmi1-1 mutants accumulate homologous recombination intermediates. These intermediates are slowly resolved at the restrictive temperature, revealing a redundant resolution activity in the absence of functional Rmi1. This resolution depends upon Mus81-Mms4, but not on Slx1-Slx4 or Yen1. I propose that while the Sgs1-Top3-Rmi1 complex constitutes the main pathway for removal of homologous recombination intermediates following a perturbed S-phase, Mus81-Mms4 can act as a back up for resolution of these intermediates, which most likely represent double Holliday junctions. In this study, I also present screens for high copy suppressors of rmi1-1 phenotypes, and for novel Rmi1 interaction partners.
22

The peoples of Britain : population genetics, archaeology and linguistics

Royrvik, E. C. January 2012 (has links)
The history of peoples has always evoked a great deal of both academic and popular interest, and the peoples of Britain, with its island position and semi-mythic serial invasions, have evoked as much as any. As most of the period during which Britain has been inhabited by modern humans lies in prehistory, archaeology has long been the best method for elucidating the past. In recent years, however, genetics has come to complement the reconstruction of peoples' pasts, with its ability to trace lineal human biology instead of transferable human culture. The purpose of this thesis is to assess population genetics systems of Britain against the backdrop of archaeologically determined history, informed for later periods by linguistics, and attempt to ascertain any marked congruities or incongruities between this history and modern genetic data. The genetic datasets included in this work are the People of the British Isles Project collection, and some ancillary cohorts from surrounding countries. The genetic systems assessed include mitochondrial DNA, classical marker genes, lactase, pigmentation genes and some phenotypes, and finally a suite of candidate genes for determining normal facial variation. In a self-contained section, the principle of relating population genetic data to population histories is illustrated by a study focusing on Central Asia (a larger area), but using fewer genetic markers. The chosen markers systems overall reveal modest amounts of genetic differentiation among different groups in Britain, but consistently highlight Wales and Orkney especially as relatively distanced from the rest of Britain. This is in keeping with the historically quite isolated state of the former, and the comparatively recent heavy influx of Norse Vikings in the latter. Further details are observable from subsets of this study: all are discussed in the context of archaeological and linguistic evidence. These findings provide support and foundation for a forthcoming study from the People of the British Isles Project, using a genome-wide SNP approach rather than selected markers, which will likely increase the nuance of this initial picture and contribute further to answering specific questions regarding Britain's past.
23

Genetic susceptibility to endometrial cancer

Cheng, Timothy January 2015 (has links)
Endometrial cancer (EC) is the fourth most common cancer affecting women in the UK. Those with a family history of EC have an increased risk compared with the general population. Highly penetrant germline mutations in mismatch repair (MMR) genes and DNA polymerases account for only a small proportion of the familial aggregation. The aim of this thesis is to investigate the genetic susceptibility to EC in the general population using cases and controls of European ancestry. A GWAS meta-analysis totalling 7,737 EC cases and 37,144 controls yielded five novel EC risk loci of genome-wide significance (P < 5x10<sup>−8</sup>). In decreasing order of significance, these were at chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). A second independent EC signal was found in the 8q24 locus. The association found in a previous EC GWAS at HNF1B on chromosome 17 was replicated at a higher significance, with the most significant SNP being rs11263763. CYP19A1 SNPs have previously been associated with EC and higher circulating levels of oestrogen from candidate studies, but I confirmed this locus to be genome-wide significant for the first time. Functional annotation and in vitro studies for the EC risk loci at the intergenic region of chromosome 13q22 suggested that the functional SNP sits within a transcriptional repressor for KLF5, with the higher-risk allele reducing repressor activity. The propensity for germline MMR and DNA polymerase muations to cause both EC and colorectal cancer (CRC) prompted me to search for common variants associated with both cancer phenotypes. An EC CRC GWAS meta-analysis showed little evidence of shared susceptibility loci. However, this meta-analysis revealed a novel genome-wide significant risk locus: rs3184504, a missense SH2B3 SNP that has not previously been associated with either EC or CRC. This thesis has enhanced the understanding of genetic susceptibility to sporadic EC and increased the number of genome-wide EC-associated variants to seven.
24

Christian ethics and genetic medicine a critical assessment of the thought of Paul Ramsey /

Gibbard, William Benton, January 1900 (has links)
Thesis (M.C.S.)--Regent College, Vancouver, BC, 1992. / Abstract and vita. Includes bibliographical references (leaves 256-294).
25

Biochemical and genetic heterogeneity of the basic glycoproteins of parotid saliva

Friedman, Robert D. January 1971 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
26

Molecular genetics of language impairment

Nudel, Ron January 2015 (has links)
Developmental language impairments are neurodevelopmental disorders in which the acquisition of language, a task which children typically perform with ease, is hindered or fraught with difficulty. This work focuses on specific language impairment (SLI), a common and highly heritable language impairment in which language development is abnormal while other developmental domains are normal. Additionally, a case-study of a child with a broader linguistic and behavioural phenotype is also presented. The work described in this thesis includes both genetic and functional investigations which were aimed at identifying candidate genes for language impairment and provide insight into the genetic mechanisms that underlie language development. I performed a genome-wide association study of SLI which included child genotype effects, maternal genotype effects, parent-of-origin effects, and maternal-foetal interaction effects. This study found significant paternal parent-of-origin effects with the gene NOP9 on chromosome 14, and suggestive maternal parent-of-origin effects with a region on chromosome 5 which had previously been implicated in autism and ADHD. Case-control and quantitative association analyses of HLA genes and SLI identified several risk alleles and protective alleles. A case-control association analysis for related individuals which used an isolated population affected by SLI identified a non-synonymous coding variant in the gene NFXL1 which was significantly more frequent in affected individuals than in unaffected individuals. High-throughput sequencing of the coding regions of NFXL1 and LD blocks surrounding associated variants in ATP2C2, CMIP and CNTNAP2 (as reported in previous studies) identified novel or rare non-synonymous coding variants in NFXL1 and ATP2C2 in SLI families as well as intronic variants in all four genes that were significantly more frequent in SLI probands than in population controls. I describe a functional study of NFXL1 examining its expression in various brain regions, the presence of different splice variants across several tissues, its effect on genes it potentially interacts with, and the subcellular localisation of the protein. Finally, I present the case-study of a child with language impairment who had chromosomal rearrangements which spanned the location of FOXP2. I examine the potential influence the chromosomal rearrangements had on FOXP2 expression and describe a lincRNA gene which was disrupted by the chromosomal inversion. In conclusion, this work identified new candidate genes for language impairment, provided further support for the involvement of previously-identified candidate genes in SLI and contributed to the understanding of the molecular function of a newly-identified candidate gene for SLI.
27

Identifying causative elements within structural variants associated with developmental disorders

Boulding, Hannah January 2013 (has links)
It has been well established that copy number variation contributes substantially to genetic variation within human populations. However, the extent to which de novo and inherited copy number variants (CNVs) underlie human disease is not well known. In this thesis, I investigate the role of de novo and inherited CNVs in a wide range of developmental abnormalities. First, I compare disease associated and apparently benign CNVs for structural differences, with the aim of identifying distinguishing features of disease causing CNVs. I identified significant enrichments of protein-coding genes, protein-coding genes associated with disease in OMIM and miRNAs amongst disease associated disease. Conversely, inherited CNVs observed in healthy individuals show depletions of these features. Following this, I employ functional enrichment approaches to identify the copy number variable genes within these de novo CNVs that contribute to the patient’s developmental abnormalities. I predict candidate genes for 143 different developmental abnormalities, with 65% of the candidate genes not having been previously associated with disease in OMIM. Through examining the distribution of these candidate genes within the patient’s CNVs, I found evidence of extensive pleiotropy and epistasis as well as a small number of simple additive effects. Finally, I extend my analyses to examine the role of inherited CNVs as the underlying cause of human developmental disorders. I implicate inherited CNVs and their overlapping copy number variable genes in the underlying causes of 45 human developmental abnormalities. Additionally, I re-examine the patients possessing both de novo CNVs and inherited CNVs using functional enrichment analyses. I reveal significant enrichments for a greater number of human developmental abnormalities when combining both the de novo and inherited CNVs, suggesting it is de novo mutations in combination with the inherited genomic background that are responsible for many instances of human developmental abnormalities.
28

Genetic and environmental factors influencing susceptibility to the complex disease multiple sclerosis

Giulio, Disanto January 2014 (has links)
Multiple sclerosis is a complex immune mediated condition of the central nervous system characterized by myelin loss and progressive neurodegeneration. The risk of developing MS is influenced by both genetic and environmental agents and, among them, several lines of evidence support a role for vitamin D deficiency, Epstein-Barr virus (EBV) infection and smoking in the aetiology of this disease. The aim of this work was to further elucidate how nature and nurture act in the causal cascade leading to MS. In chapter 1, I show that the main genetic factor in adult MS (the HLA-DRB1*1501 allele) plays an equally important role in paediatric cases of MS (PMS) and that EBV negative PMS patients represent a separate entity characterized by lower age at disease onset, lower female to male ratio and a trend towards a lower frequency of the HLA-DRB1*1501 allele. In chapter 2, I provide evidence in support of month of birth having a role on MS risk and T cell production and that vitamin D may underlie this effect. In chapter 3 I demonstrate the presence of a link between vitamin D deficiency and the immune response against EBV, whereby the proportion of EBV seropositive MS patients and controls increases with increasing latitude and high dose vitamin D supplementation appears to reduce the level of antibodies against this virus. In chapter 4, I show that MS associated genetic variants are located in genomic regions that exert a regulatory function and are active in immune cell types. In chapter 5, I illustrate how vitamin D receptor binding is also located within active regulatory regions in immune cells and that this is particularly evident near MS associated genes. Finally, in chapter 6, I use chromatin data on more than 100 different cell types and conclude that MS associated genetic variants are particularly active in T helper, T cytotoxic and B cells. Further work is needed to elucidate how genetic and environmental agents play a role in the cause of MS and to develop effective strategies for disease treatment and prevention.
29

Control of expression of human snRNA genes

Zaborowska, Justyna Katarzyna January 2013 (has links)
In humans, protein-coding genes and most small nuclear (sn)RNA genes are transcribed by RNA polymerase II (pol II).The carboxy-terminal domain (CTD) of the largest subunit of pol II possesses multiple heptapetide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of Ser2, Ser5 and Ser7 mediates the recruitment of transcription and RNA processing factors during the transcription cycle. There are notable differences between snRNA genes and protein-coding genes in terms of mechanisms controlling their expression. Pol II does not appear to make the transition to long-range productive elongation during transcription of snRNA genes, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. Initiation of transcription of most human genes transcribed by pol II requires the formation of a preinitiation complex (PIC) comprising TFIIA, B, D, E, F and H and pol II. The general transcription factor, TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors (TAFs). Differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. It has already been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5, has been shown to be associated with pol II-transcribed snRNA genes, the full complement of TAFs associated with these genes remained unclear. Here I show, using a ChIP and siRNA-mediated knockdown approach, that the TBP/TAF complex on snRNA genes differs from that on protein-coding genes. Interestingly, the largest TAF, TAF1 and the core TAFs, TAF10 and TAF4 are not detected on snRNA genes. I propose that this snRNA gene-specific TAF subset plays a key role in gene-type-specific control of expression. In addition, in order to further understand the molecular mechanism underlying the differences between expression of protein-coding genes and snRNA genes, I have investigated the role of RNA pol II-associated protein 2 (RPAP2) in transcription of snRNA genes. Here I show that RPAP2 recognizes the phospho-Ser7 mark on the pol II CTD, siRNA mediated knockdown of RPAP2 causes defects in snRNA gene expression and that RPAP2 is a CTD Ser5 phosphatase. I also present my studies of the mechanism of inhibition of phospho-Ser2 by herpes simplex virus-1 (HSV-1) protein ICP22. Phosphorylation of Ser2 by the positive transcription elongation factor (P-TEFb) is associated with productive transcriptional elongation. However, P-TEFb is not required for elongation of transcription of snRNA genes, but functions only to activate 3' box-directed RNA processing. In addition, there are conflicting data as to whether Cdk9 is acting as a Ser2 kinase during transcription of pol II-transcribed snRNA genes. As ICP22 is thought to inhibit P-TEFb, this protein could provide an alternative means to study P-TEFb function in expression of snRNA genes.
30

Genome-wide mapping of the hypoxic response

Schödel, Johannes January 2012 (has links)
Hypoxia regulates many hundreds of genes with important roles in ischemic and neoplastic disorders. Central to this response are the hypoxia inducible transcription factors (HIF). This work aimed to better understand the direct transcriptional response to HIF by mapping HIF-binding sites across the genome using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq). ChIP-seq for HIF in MCF-7 breast cancer cells under hypoxic conditions revealed more than 400 high-stringency HIF-binding sites genome-wide. Each member of the HIF heterodimer was present with near complete concordance. Binding of the two principle isoforms revealed a high degree of overlap with no differences in the DNA-binding motif. HIF-binding was associated with upregulation, but not downregulation of genes indicating that it functions as a transcriptional activator but not as a repressor. HIF-binding occurred preferentially at gene promoters, but was also present at promoter-distant sites, which were also associated with gene regulation, implicating long-range interactions in hypoxic gene activation. HIF-binding was associated with markers of open chromatin and active enhancers that were present in normoxia, indicating that HIF-binding sites are already “prepared” to bind HIF before the hypoxic stimulus. Analysis of normoxic and hypoxic RNA pol2 and H3K4me3 signals revealed distinctive hypoxia-inducible changes unique to HIF-binding genes. Comparable numbers of HIF-binding sites were observed in a second cell line (von Hippel-Lindau defective 786-O renal cancer cells) as in MCF-7 breast cancer cells, although approximately 65% were unique to 786-O cells. These unique sites were more frequently promoter-distant. Correlation with expression analyses from renal tumours indicated that many HIF-binding genes were upregulated in renal cancer. One such RCC unique promoter-distant HIF-binding site was identified at an intergenic locus on chromosome 11q13.3 that has been associated with renal cancer in Genome-Wide Association Studies. The HIF-binding site was in high linkage disequilibrium with the disease associated SNP and had the epigenetic hallmarks of an enhancer. Analysis of pan-genomic expression analyses identified the cell-cycle regulator cyclin D1 as highly HIF-regulated, and a physical association between the HIF-binding site and the CCND1 promoter could be determined. Furthermore, in a renal cancer cell line heterozygous at this locus, the RCC-protective allele disrupted HIF-binding leading to an allelic imbalance in cyclin D1 expression.

Page generated in 0.0735 seconds