• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 46
  • 28
  • 14
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Ethics of Heritable Non-Therapeutic Human Genome Editing

Guerra, Enzo January 2021 (has links)
This thesis considers the moral permissibility of heritable non-therapeutic human genome editing. That is, genetic changes that seek to alter the genes of future generations for enhancement and aesthetic reasons. Some examples include genetic changes to muscle mass, cognitive abilities, eye colour, hair texture, skin colour, and so on. Given relevant moral considerations, I argue that the case against heritable non-therapeutic human genome editing is stronger than the case in favour. / Thesis / Master of Philosophy (MA)
2

Design and optimization of engineered nucleases for genome editing applications

Lin, Yanni 07 January 2016 (has links)
Genome editing mediated by engineered nucleases, including Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) / CRISPR-associated (Cas) systems, holds great potential in a broad range of applications, including biomedical studies and disease treatment. In addition to creating cell lines and disease models, this technology allows generation of well-defined, genetically modified cells and organisms with novel characteristics that can be used to cure diseases, study gene functions, and facilitate drug development. However, achieving both high efficiency and high specificity remains a major challenge in nuclease-based genome editing. The objectives of this thesis were to optimize the design of TALENs to achieve high on-target cleavage activity, and analyze the off-target effect of CRISPR/Cas to help achieve high specificity. Based on experimental evaluation of >200 TALENs, we compared three different TALEN architectures, proposed new TALEN design rules, and developed a Scoring Algorithm for Predicting TALEN Activity (SAPTA) to identify optimal target sites with high activity. We also performed a systematic study to demonstrate the off-target cleavage by CRISPR/Cas9 when DNA sequences contain insertions or deletions compared to the RNA guide strand. Our results strongly indicate the need to perform comprehensive off-target analysis, and suggest specific guidelines for reducing potential off-target cleavage of CRISPR/Cas9 systems. The studies performed in this thesis work provide important insight and powerful tools for the optimization of engineered nucleases in genome editing, thus making a significant contribution to biomedical engineering and medical applications.
3

Characterization and Optimization of the CRISPR/Cas System for Applications in Genome Engineering

Lin, ChieYu 01 May 2015 (has links)
The ability to precisely manipulate the genome in a targeted manner is fundamental to driving both basic science research and development of medical therapeutics. Until recently, this has been primarily achieved through coupling of a nuclease domain with customizable protein modules that recognize DNA in a sequence-specific manner such as zinc finger or transcription activator-like effector domains. Though these approaches have allowed unprecedented precision in manipulating the genome, in practice they have been limited by the reproducibility, predictability, and specificity of targeted cleavage, all of which are partially attributable to the nature of protein-mediated DNA sequence recognition. It has been recently shown that the microbial CRISPR-Cas system can be adapted for eukaryotic genome editing. Cas9, an RNA-guided DNA endonuclease, is directed by a 20-nt guide sequence via Watson-Crick base-pairing to its genomic target. Cas9 subsequently induces a double-stranded DNA break that results in targeted gene disruption through non-homologous end-joining repair or gene replacement via homologous recombination. Finally, the RNA guide and protein nuclease dual component system allows simultaneous delivery of multiple guide RNAs (sgRNA) to achieve multiplex genome editing with ease and efficiency. The potential effects of off-target genomic modification represent a significant caveat to genome editing approaches in both research and therapeutic applications. Prior work from our lab and others has shown that Cas9 can tolerate some degree of mismatch with the guide RNA to target DNA base pairing. To increase substrate specificity, we devised a technique that uses a Cas9 nickase mutant with appropriately paired guide RNAs to efficiently inducing double-stranded breaks via simultaneous nicks on both strands of target DNA. As single-stranded nicks are repaired with high fidelity, targeted genome modification only occurs when the two opposite-strand nicks are closely spaced. This double nickase approach allows for marked reduction of off-target genome modification while maintaining robust on-target cleavage efficiency, making a significant step towards addressing one of the primary concerns regarding the use of genome editing technologies. The ability to multiplex genome engineering by simply co-delivering multiple sgRNAs is a versatile property unique to the CRISPR-Cas system. While co-transfection of multiple guides is readily feasible in tissue culture, many in vivo and therapeutic applications would benefit from a compact, single vector system that would allow robust and reproducible multiplex editing. To achieve this, we first generated and functionally validated alternate sgRNA architectures to characterize the structure-function relationship of the Cas9 protein with the sgRNA in DNA recognition and cleavage. We then applied this knowledge towards the development and optimization of a tandem synthetic guide RNA (tsgRNA) scaffold that allows for a single promoter to drive expression of a single RNA transcript encoding two sgRNAs, which are subsequently processed into individual active sgRNAs.
4

Knock-out screening of somatic linker histones reveals non-redundant roles in hESCs

Vargas Romero, Fernanda 03 1900 (has links)
H1 linker histones are structural components of chromatin, generally implicated in the formation of “higher order” chromatin states. With eleven non-allelic subtypes in mammals, the H1 family is highly diverse. While they are commonly associated with chromatin compaction and transcription repression, these histones also play crucial roles in mouse development and stem cell differentiation. Although the prevailing belief is that H1 subtypes have redundant functions, their distinct amino acid composition and differential expression throughout development suggest subtype-specific roles. Previous studies have explored the roles and interactions of linker histones, but limitations in model systems, cell types, and subtypes studied have hindered our comprehensive understanding of the implications and synergy of multiple H1 linker histones. To gain insight into the individual and combined roles of linker histones in human embryonic stem cells (hESCs), we conducted an extensive study in which we systematically removed each somatic linker histone and looked at all potential combinations. Using RNA-seq and in-depth bioinformatic analysis, we discovered that linker histones in hESCs exhibit partial non-redundancy. We classified them into three main groups associated with distinct biological processes, particularly related to development and stem cell differentiation. We observed that depleting H1.1 or H1.5 influenced the proportion of mesodermal progenitor cells, with further impact when combined with specific H1 subtypes, resulting in changes in ectodermal progenitor cells. Additionally, we demonstrated that linker histones synergistically regulate interconnected biological pathways, potentially affecting early stem cell differentiation. Based on our findings, we propose that H1 subtypes regulate specific transcriptional programs, which in conjunction, are fundamental in the coordination of essential cellular processes involved in early human embryonic development, both in the ground state of hESCs and during stem cell differentiation. We anticipate that the generation of the H1 KO library described in our study will provide a novel tool for studying the role of linker histones in later stages of human development and will facilitate the comprehension of specific roles of these chromatin proteins in other relevant cellular processes.
5

Elucidation of the Function of Dihydrochalcones in Apple

Miranda Chávez, Simón David 05 April 2023 (has links)
Dihydrochalcones (DHCs) are specialised metabolites with a limited natural distribution, found in significant amounts in Malus x domestica Borkh. (cultivated apple) and wild Malus species. Among them, M. x domestica accumulates significant amounts of phloridzin, whilst trilobatin and sieboldin are abundant in some wild relatives. DHCs have demonstrated a wide range of bioactive properties in biomedical models. Some DHCs have also been reported to act as flavour enhancers. Phloridzin may act as an anti-diabetic compound by blocking sodium-linked glucose transport and renal reabsorption of glucose in kidneys. Despite the protective effects reported in mammal models, little is known about how these metabolites are biosynthesised and what is their function in planta, where it has been hypothesised a role for phloridzin in plant growth. The biosynthetic pathway leading to DHC formation has been proposed in apple, and some steps have been characterised recently. DHC pathway diverts from the main phenylpropanoid pathway most probably from 4-coumaroyl-CoA by the action of a yet unknown reductase that would produce 4-dihydrocoumaroyl-CoA. Then, chalcone synthase (CHS) catalyses its condensation to form phloretin. Phloretin can be directly glycosylated at position 2′- or 4′ by the previously characterised 2′- and 4′-O-UDP-glycosyltransferases PGT1 and PGT2, to produce phloridzin or trilobatin, respectively. However, sieboldin has been postulated to derive from hydroxylation in position 3 of phloretin before been glycosylated, and the key responsible enzyme producing 3-hydroxyphloretin has not been yet discovered. The main aim of this PhD proposal was to provide a better understanding of the physiological functions of DHCs in apple, as well as to contribute to the elucidation of the biosynthetic pathway as the molecular basis for future genetic engineering in apple. Towards this aim, functional characterisation was conducted in MdPGT1 knockdown apple lines by RNAi silencing and CRISPR/Cas9 genome editing to assess the physiological effect of targeting a key biosynthetic gene involved in phloridzin biosynthesis. In addition, molecular, transcriptomic and metabolomic analyses were integrated to evaluate candidate genes accounting for 3-hydroxylase activity involved in DHC biosynthesis in wild Malus species accumulating sieboldin. Moreover, a de novo transcriptome assembly was carried out in an intergeneric hybrid between M. x domestica and Pyrus communis L. known to accumulate intermediate levels of DHCs compared to apple, in order to identify additional genes potentially involved in DHC pathway. We compared the physiological effect of reducing phloridzin through PGT1 knockdown by RNAi silencing and CRISPR/Cas9 genome editing. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology as reported in literature, whereas genome edited lines exhibited normal growth despite reduced foliar phloridzin. Bioactive brassinosteroids and gibberellins were found to be key players involved in the contrasting effects on growth observed following phloridzin reduction. Moreover, a cytochrome P450 from wild M. toringo (K. Koch) Carriere syn. sieboldii Rehder, and M. micromalus Makino was identified as dihydrochalcone 3-hydroxylase (DHCH), proving to produce 3-hydroxyphloretin and sieboldin in yeast. Different DHCH allele isoforms found in domesticated apple and M. toringo and M. micromalus correlated with sieboldin accumulation in a Malus germplasm collection. Finally, the assembled de novo transcriptome of the intergeneric apple/pear hybrid integrated to functional annotation and metabolomic analysis resulted in the identification of genes potentially involved in DHC biosynthesis, providing the basis for future biochemical characterisation. Altogether these results contribute to get insight into the roles of DHCs in apple and to illustrate how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple. Furthermore, the present PhD thesis contributes to the state-of-the-art by elucidating key missing steps in the biosynthesis of DHCs, which could be relevant for future establishment of genetic engineered lines that contribute to assess physiological effects of altering DHCs content, as well as to establish heterologous expression systems to produce de novo DHCs.
6

Harnessing CRISPR technology for the treatment of cystic fibrosis

Maule, Giulia 06 July 2020 (has links)
Cystic fibrosis is an autosomal recessive disease caused by mutations in the CFTR gene. A significant number of mutations (~13%) alter the correct splicing of the CFTR gene, causing the transcription of aberrant transcripts resulting in the production of a non-functional CFTR channel. We focus our research on two intronic CF causing mutations, 3272-26A>G and 3849+10kbC>T that create a new acceptor and donor splice site, respectively, generating in the inclusion of intronic portions into the mRNA. We developed a new genome editing approach to permanently correct the abovementioned mutations by means of CRISPR nucleases. We exploited the use of either Streptococcus pyogenes Cas9, SpCas9, or Acidaminococcus sp. BV3L6, AsCas12a, to edit the aberrant splicing sites and restore the production of the correct transcript, avoiding modifications of the CFTR coding sequence. A comparative analysis between SpCas9 and AsCas12a revealed that the use of AsCas12a with a single crRNA efficiently edits the target loci, producing correctly spliced mRNAs in both 3272-26A>G and 3849+10kbC>T mutations. Furthermore, this genetic repair strategy proved to be highly specific, exhibiting a strong discrimination between the mutated and the wild-type allele and no detectable off-target activity with genome-wide analysis. The selected crRNAs were tested in patients derived primary airway cells and intestinal organoids compound heterozygous for the 3272-26A>G or 3849+10kbC>T mutations, that are considered relevant CF models for translational research. The efficient splicing repair and the complete recovery of CFTR channel activity observed confirmed the goodness of the proposed gene editing strategy. These results demonstrated that allele-specific genome editing with AsCas12a can correct aberrant CFTR splicing mutations, paving the way for a permanent splicing correction in genetic diseases.
7

Analysis of SLKED gene expression in CRISPR/Cas9-mediated gene knockouts in Tomato (Micro-Tom)

Unknown Date (has links)
Clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas) protein system, CRISPR/Cas9, uses single-guide RNA to guide Cas9 to the target site for genome editing. In this study, the CRISPR/Cas9 system was used to knockout KED in tomato (Solanum lycopersicum). KED was first identified while screening the wounded tobacco (Nicotiana tabacum) leaves. We found that alignment of the protein sequence of SlKED (Solanum lycopersicum KED) and NtKED (Nicotiana tabacum KED) showed 55.1% identity. To investigate, we generated SlKED knockout tomato plants with a single base pair deletion, a five base pair deletion and a three base pair deletion with a single base pair insertion. We performed wounding assays and analyzed gene expression and found that the wounded SlKED knockout plant showed no gene induction. Furthermore, the biological assay results revealed that the tobacco hornworm (Manduca sexta) gained more mass when fed on the SlKED knockout plant. Our studies show that the KED gene plays a role in wound-induced mechanism and suggested it may involve in the plant defense system against biological stress and insect feeding. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
8

Immune modulation in pigs through editing of the RELA locus

Ballantyne, Maeve Kellett January 2017 (has links)
Livestock animals are an ancient, vital renewable natural resource. Many livestock species have the ability to convert inedible crops and waste food into food fit for human consumption, in the form of meat, eggs and dairy products. As the global demand for high value animal protein is ever increasing, the livestock market continues to play a major role in worldwide economics. Animal disease has the potential to be a huge burden on the livestock industry, impacting both welfare and production. Major outbreaks of transboundary diseases, such as foot and mouth disease, rinderpest and classical swine disease, have resulted in devastating global economic losses. As a result, scientific research is engaged in lowering this impact by generating effective preventative measures and treatments. One way to reduce livestock disease is to select animals that are genetically resistant, traditionally carried out through selective animal breeding programs; however, this is a time-consuming process and requires that appropriate genetic variation exists within the population. Advances in genome engineering technologies offer us an alternative approach, with the capability to make genetic improvements in livestock within a single generation. It is hypothesised that resilience to a disease, known as African swine fever (ASF), could be genetically engineered into the domestic pig. ASF is a highly contagious disease of domestic pigs and is a re-emerging global threat to the swine industry. It is a lethal haemorrhagic disease caused by a virus, known as the African swine fever virus (ASFV). At present, there is no vaccine or treatment for ASF, and disease control relies on rapid diagnosis, quarantine and the mass slaughter of animals. Unlike the domestic pig, swine indigenous to Sub-Saharan Africa, such as the warthog, show no clinical signs of disease following infection with ASFV. A comparative study was carried out to identify host genetic variation that could underlie the difference in response to ASFV, with candidate genes selected based on their potential involvement with the viral protein A238L, involved in immune evasion. Functional polymorphisms where identified in the porcine RELA gene, encoding RelA, a subunit of the NF-κB transcription factor family. This evolutionary conserved protein family plays a vital role in mediating inflammatory and immune responses. The specific RELA polymorphisms identified alter potential phosphorylation sites within the C-terminal transactivation domain of RelA which have been found to modulate NF-κB transcriptional activity in vitro. We set out to investigate whether genome editing tools could be employed to engineer the RELA sequence of domestic pigs. Initial attempts targeted the final exon of RELA, producing animals with a truncated RelA protein; modified animals lack the final 60 amino acids of the C-terminal transactivation domain. The aim of this thesis was to genotype and characterise the effects of this RELA modification at a molecular, cellular, morphological and whole organism level. The ultimate goal of this project was to investigate whether this RELA modification altered the domestic pig’s response to ASFV in vitro and in vivo. Unlike rela-/- mice which have an embryonic lethal phenotype, these RELA-edited pigs were born healthy and were fully viable when housed in a typical farm environment. Phenotypic analysis of lymphoid tissues from the RELA-edited pigs demonstrated no significant anatomical or histological changes compared to unmodified counterparts. Pigs homozygous for the RELA mutation had a significantly lower body weight compared to wild-type pigs. Molecular studies of samples from these pigs have shown that the modified RelA has an altered activity; however, the RELA modified pigs do develop the characteristic disease phenotype when challenged with ASFV. Finally, genome editors have been developed to introduce a specific warthog allele into the domestic pig RELA locus, these editors are currently being taken forward to produce a novel pig line.
9

Methods to increase the efficiency of precise CRISPR genome editing

Riesenberg, Stephan 15 February 2021 (has links)
Pluripotente Stammzellen haben das Potential, in unterschiedliche Zelltypen zu differenzieren und können genutzt werden, um organähnliche Mikrostrukturen zu generieren. Somit können molekulare Unterschiede verschiedenster künstlich differenzierter Gewebe, etwa zwischen Mensch und Schimpanse, anhand von pluripotenten Ausgangszellen untersucht werden. Da die Genome unserer nächsten ausgestorbenen Verwandten Neandertaler und Denisovaner aus konservierter DNA in alten Knochen sequenziert wurden, könnten ebenso Unterschiede zwischen Mensch und diesen Spezies oder dem letzten gemeinsamen Vorfahren untersucht werden. Dies erfordert jedoch die Generierung neandertalisierter Stammzellen durch künstliche Integration von Neandertalerallelen in humane Stammzellen, etwa durch die CRISPR Genomeditierungstechnik. Durch CRISPR kann ein DNA-Doppelstrangbruch an einer gewünschten Stelle im Genom eingefügt werden. Die zelluläre Reparatur des Doppelstrangbruchs ermöglicht dann die Editierung des Genoms. Basierend auf einer DNA-Matrize, die die gewünschte Modifikation trägt, kann das Genom an dieser Stelle präzise editiert werden. Die Effizienz präziser Editierung ist jedoch sehr niedrig im Vergleich zu unpräziser Reparatur. Um möglichst effizient neandertalisierte Stammzellen generieren zu können, wurden im Zuge dieser Doktorarbeit Methoden entwickelt, welche die präzise Genomeditierungseffizienz drastisch steigern. Zum einen wurde aus mehreren niedermolekularen Substanzen, welche mit Proteinen der DNA-Reparaturen interagieren, ein optimierter Mix entwickelt. Weiterhin konnte durch eine Mutation in einem zentralen Reparaturprotein die Effizienz für die Editierung eines einzelnen Gens auf 87% erhöht werden. Diese hohe Effizienz ermöglicht erstmals die präzise homozygote Editierung von vier Genen auf einmal in ein und derselben Zelle
10

Targeted Genome Regulation and Editing in Plants

Piatek, Agnieszka Anna 03 1900 (has links)
The ability to precisely regulate gene expression patterns and to modify genome sequence in a site-specific manner holds much promise in determining gene function and linking genotype to phenotype. DNA-binding modules have been harnessed to generate customizable and programmable chimeric proteins capable of binding to site-specific DNA sequences and regulating the genome and epigenome. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like effectors (TALEs) are amenable to engineering to bind any DNA target sequence of interest. Deciphering the code of TALE repeat binding to DNA has helped to engineer customizable TALE proteins capable of binding to any sequence of interest. Therefore TALE repeats provide a rich resource for bioengineering applications. However, the TALE system is limited by the requirement to re-engineer one or two proteins for each new target sequence. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) has been used as a versatile genome editing tool. This machinery has been also repurposed for targeted transcriptional regulation. Due to the facile engineering, simplicity and precision, the CRISPR/Cas9 system is poised to revolutionize the functional genomics studies across diverse eukaryotic species. In this dissertation I employed transcription activator-like effectors and CRISPR/Cas9 systems for targeted genome regulation and editing and my achievements include: 1) I deciphered and extended the DNA-binding code of Ralstonia TAL effectors providing new opportunities for bioengineering of customizable proteins; 2) I repurposed the CRISPR/Cas9 system for site-specific regulation of genes in plant genome; 3) I harnessed the power of CRISPR/Cas9 gene editing tool to study the function of the serine/arginine-rich (SR) proteins.

Page generated in 0.0831 seconds