Spelling suggestions: "subject:"genomewide association"" "subject:"genomehwide association""
1 |
An Analysis of Genome-Wide Association Studies to Produce Evidence Useful in Guiding Their Reporting and SynthesisYurkiewich, Alexander John 08 February 2012 (has links)
Introduction The present study evaluated reported methodological characteristics of GWAS, investigating relationships between reported methodological characteristics and outcomes observed.
Methods GWAS were identified from NHGRI’s catalogue of GWAS (2005 to 2009). Multivariate meta-regression models (random effects) were produced to identify the impact of reported study characteristics and the strength of relationships between the variables and outcomes.
Results The summary odds ratios for replication components of GWAS in cancer was 1.34 (95% CI 1.25, 1.43) and neuropsychiatric disorders was 1.43 (95% CI 1.30, 1.57). Heterogeneity was accounted for by nature of the control group, relationship between case/control groups, whether cases/controls were drawn from the same population, if data was a primary collection or a build on pre-existing data, if quality assurance was reported, and if the study reported power/sample size.
Conclusion Evidence supports the existence of variability in reporting, with index components demonstrating less variability than replication components in the GWAS.
|
2 |
An Analysis of Genome-Wide Association Studies to Produce Evidence Useful in Guiding Their Reporting and SynthesisYurkiewich, Alexander John 08 February 2012 (has links)
Introduction The present study evaluated reported methodological characteristics of GWAS, investigating relationships between reported methodological characteristics and outcomes observed.
Methods GWAS were identified from NHGRI’s catalogue of GWAS (2005 to 2009). Multivariate meta-regression models (random effects) were produced to identify the impact of reported study characteristics and the strength of relationships between the variables and outcomes.
Results The summary odds ratios for replication components of GWAS in cancer was 1.34 (95% CI 1.25, 1.43) and neuropsychiatric disorders was 1.43 (95% CI 1.30, 1.57). Heterogeneity was accounted for by nature of the control group, relationship between case/control groups, whether cases/controls were drawn from the same population, if data was a primary collection or a build on pre-existing data, if quality assurance was reported, and if the study reported power/sample size.
Conclusion Evidence supports the existence of variability in reporting, with index components demonstrating less variability than replication components in the GWAS.
|
3 |
An Analysis of Genome-Wide Association Studies to Produce Evidence Useful in Guiding Their Reporting and SynthesisYurkiewich, Alexander John 08 February 2012 (has links)
Introduction The present study evaluated reported methodological characteristics of GWAS, investigating relationships between reported methodological characteristics and outcomes observed.
Methods GWAS were identified from NHGRI’s catalogue of GWAS (2005 to 2009). Multivariate meta-regression models (random effects) were produced to identify the impact of reported study characteristics and the strength of relationships between the variables and outcomes.
Results The summary odds ratios for replication components of GWAS in cancer was 1.34 (95% CI 1.25, 1.43) and neuropsychiatric disorders was 1.43 (95% CI 1.30, 1.57). Heterogeneity was accounted for by nature of the control group, relationship between case/control groups, whether cases/controls were drawn from the same population, if data was a primary collection or a build on pre-existing data, if quality assurance was reported, and if the study reported power/sample size.
Conclusion Evidence supports the existence of variability in reporting, with index components demonstrating less variability than replication components in the GWAS.
|
4 |
An Analysis of Genome-Wide Association Studies to Produce Evidence Useful in Guiding Their Reporting and SynthesisYurkiewich, Alexander John January 2012 (has links)
Introduction The present study evaluated reported methodological characteristics of GWAS, investigating relationships between reported methodological characteristics and outcomes observed.
Methods GWAS were identified from NHGRI’s catalogue of GWAS (2005 to 2009). Multivariate meta-regression models (random effects) were produced to identify the impact of reported study characteristics and the strength of relationships between the variables and outcomes.
Results The summary odds ratios for replication components of GWAS in cancer was 1.34 (95% CI 1.25, 1.43) and neuropsychiatric disorders was 1.43 (95% CI 1.30, 1.57). Heterogeneity was accounted for by nature of the control group, relationship between case/control groups, whether cases/controls were drawn from the same population, if data was a primary collection or a build on pre-existing data, if quality assurance was reported, and if the study reported power/sample size.
Conclusion Evidence supports the existence of variability in reporting, with index components demonstrating less variability than replication components in the GWAS.
|
5 |
The genetics of blood pressure regulation and its target organs from association studies in 342,415 individualsEhret, Georg B, Ferreira, Teresa, Chasman, Daniel I, Jackson, Anne U, Schmidt, Ellen M, Johnson, Toby, Thorleifsson, Gudmar, Luan, Jian'an, Donnelly, Louise A, Kanoni, Stavroula, Petersen, Ann-Kristin, Wong, Tien Y, Yang, Tsun-Po, Yao, Jie, Yengo, Loic, Zhang, Weihua, Magnusson, Patrik K, Zhao, Jing Hua, Zhu, Xiaofeng, Bovet, Pascal, Goodall, Alison H, Mulas, Antonella, Cooper, Richard S, Mohlke, Karen L, Saleheen, Danish, Lee, Jong-Young, Elliott, Paul, Gierman, Hinco J, Willer, Cristen J, Salfati, Elias L, Franke, Lude, Hovingh, G Kees, Nagaraja, Ramaiah, Goodarzi, Mark O, Taylor, Kent D, Dedoussis, George, Sever, Peter, Wong, Andrew, Lind, Lars, Assimes, Themistocles L, Njølstad, Inger, Schwarz, Peter E H, Rallidis, Loukianos S, Narisu, Narisu, Langenberg, Claudia, Pihur, Vasyl, Snieder, Harold, Caulfield, Mark J, Melander, Olle, Laakso, Markku, Saltevo, Juha, Rauramaa, Rainer, Tuomilehto, Jaakko, Ingelsson, Erik, Nikus, Kjell, Lehtimäki, Terho, Theusch, Elizabeth, Gorski, Mathias, Hveem, Kristian, Palmas, Walter, März, Winfried, Kumari, Meena, Salomaa, Veikko, Chen, Yii-Der I, Rotter, Jerome I, O'Donnell, Christopher J, Froguel, Philippe, Jarvelin, Marjo-Riitta, Lakatta, Edward G, Gräßler, Jürgen, Smith, Andrew J P, Kuulasmaa, Kari, Franks, Paul W, Hamsten, Anders, Wichmann, H-Erich, Palmer, Colin N A, O'Reilly, Paul F, Stefansson, Kari, Ridker, Paul M, Loos, Ruth J F, Chakravarti, Aravinda, Groves, Christopher J, Deloukas, Panos, Folkersen, Lasse, Morris, Andrew P, Newton-Cheh, Christopher, Munroe, Patricia B, Ong, Ken K, Witkowska, Kate, Pers, Tune H, Joehanes, Roby, Kim, Stuart K, Lataniotis, Lazaros, Gudnason, Vilmundur, Jansen, Rick, Johnson, Andrew D, Warren, Helen, Kim, Young Jin, Paccaud, Fred, Zhao, Wei, Wu, Ying, Tayo, Bamidele O, Bochud, Murielle, Absher, Devin, Adair, Linda S, Gyllensten, Ulf, Amin, Najaf, Arking, Dan E, Axelsson, Tomas, Palmer, Cameron D, Baldassarre, Damiano, Balkau, Beverley, Bandinelli, Stefania, Barnes, Michael R, Barroso, Inês, Bevan, Stephen, Bis, Joshua C, Hallmans, Göran, Bjornsdottir, Gyda, Boehnke, Michael, Shah, Sonia, Boerwinkle, Eric, Bonnycastle, Lori L, Boomsma, Dorret I, Bornstein, Stefan R, Brown, Morris J, Burnier, Michel, Cabrera, Claudia P, Chambers, John C, Hartikainen, Anna-Liisa, Chang, I-Shou, Fraser, Ross M, Cheng, Ching-Yu, Chines, Peter S, Chung, Ren-Hua, Collins, Francis S, Connell, John M, Döring, Angela, Dallongeville, Jean, Danesh, John, de Faire, Ulf, Hassinen, Maija, Parsa, Afshin, Delgado, Graciela, Dominiczak, Anna F, Doney, Alex S F, Drenos, Fotios, Edkins, Sarah, Eicher, John D, Elosua, Roberto, Enroth, Stefan, Erdmann, Jeanette, Eriksson, Per, Pedersen, Nancy L, Havulinna, Aki S, Esko, Tonu, Evangelou, Evangelos, Evans, Alun, Fall, Tove, Farrall, Martin, Felix, Janine F, Ferrières, Jean, Ferrucci, Luigi, Fornage, Myriam, Penninx, Brenda W, Forrester, Terrence, Hayward, Caroline, Franceschini, Nora, Franco, Oscar H, Franco-Cereceda, Anders, Strawbridge, Rona J, Hercberg, Serge, Herzig, Karl-Heinz, Hicks, Andrew A, Hingorani, Aroon D, Perola, Markus, Hirschhorn, Joel N, Hofman, Albert, Holmen, Jostein, Holmen, Oddgeir Lingaas, Hottenga, Jouke-Jan, Howard, Phil, Shungin, Dmitry, Hsiung, Chao A, Hunt, Steven C, Ikram, M Arfan, Peters, Annette, Illig, Thomas, Iribarren, Carlos, Jensen, Richard A, Kähönen, Mika, Kang, Hyun Min, Kathiresan, Sekar, Keating, Brendan J, Hughes, Maria F, Khaw, Kay-Tee, Kim, Yun Kyoung, Poulter, Neil, Kim, Eric, Kivimaki, Mika, Klopp, Norman, Kolovou, Genovefa, Komulainen, Pirjo, Kooner, Jaspal S, Kosova, Gulum, Krauss, Ronald M, Meirelles, Osorio, Kuh, Diana, Pramstaller, Peter P, Kutalik, Zoltan, Kuusisto, Johanna, Kvaløy, Kirsti, Lakka, Timo A, Lee, Nanette R, Lee, I-Te, Lee, Wen-Jane, Levy, Daniel, Li, Xiaohui, Kaakinen, Marika, Psaty, Bruce M, Liang, Kae-Woei, Lin, Honghuang, Lin, Li, Lindström, Jaana, Lobbens, Stéphane, Männistö, Satu, Müller, Gabriele, Müller-Nurasyid, Martina, Mach, François, Markus, Hugh S, Quertermous, Thomas, Bouatia-Naji, Nabila, Marouli, Eirini, McCarthy, Mark I, McKenzie, Colin A, Meneton, Pierre, Menni, Cristina, Metspalu, Andres, Mijatovic, Vladan, Moilanen, Leena, Montasser, May E, Rao, Dabeeru C, Morris, Andrew D, Kristiansson, Kati, Morrison, Alanna C, Ganesh, Santhi K, Kleber, Marcus E, Rasheed, Asif, Rayner, N William, Renström, Frida, Rettig, Rainer, Rice, Kenneth M, Roberts, Robert, Rose, Lynda M, Rossouw, Jacques, Samani, Nilesh J, Gao, He, Sanna, Serena, Guo, Xiuqing, Saramies, Jouko, Schunkert, Heribert, Sebert, Sylvain, Sheu, Wayne H-H, Shin, Young-Ah, Sim, Xueling, Smit, Johannes H, Smith, Albert V, Gertow, Karl, Sosa, Maria X, Spector, Tim D, Lyytikäinen, Leo-Pekka, Stančáková, Alena, Stanton, Alice V, Stirrups, Kathleen E, Stringham, Heather M, Sundstrom, Johan, Swift, Amy J, Syvänen, Ann-Christine, Gianfagna, Francesco, Tai, E-Shyong, Tanaka, Toshiko, Tarasov, Kirill V, Fava, Cristiano, Teumer, Alexander, Thorsteinsdottir, Unnur, Tobin, Martin D, Tremoli, Elena, Uitterlinden, Andre G, Uusitupa, Matti, Gigante, Bruna, Vaez, Ahmad, Vaidya, Dhananjay, van Duijn, Cornelia M, van Iperen, Erik P A, Eriksson, Niclas, Vasan, Ramachandran S, Verwoert, Germaine C, Virtamo, Jarmo, Vitart, Veronique, Voight, Benjamin F, Giulianini, Franco, Vollenweider, Peter, Wagner, Aline, Wain, Louise V, Wareham, Nicholas J, Watkins, Hugh, Nolte, Ilja M, Weder, Alan B, Westra, Harm-Jan, Wilks, Rainford, Wilsgaard, Tom, Goel, Anuj, Wilson, James F 12 September 2016 (has links)
To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.
|
6 |
Primary rhegmatogenous retinal detachment : clinical epidemiology and genetic aetiologyMitry, Danny January 2013 (has links)
Primary rhegmatogenous retinal detachment (RRD) is one of the most common ophthalmic emergencies. RRD is caused by a full thickness break in the retina which initiates separation of the neurosensory retina from the underlying retinal pigment epithelium. The subsequent accumulation of fluid within this potential space extends the area of detachment and causes visual loss. Previous assessments of RRD incidence have demonstrated large differences in case definition and methodology, with incidence estimates varying 3-fold geographically and in different time periods. To date there have been no systematic or prospective incidence estimates of primary RRD in the U.K. In this thesis I present the findings of a 2-year epidemiology study that prospectively aimed to recruit all incident cases of primary RRD diagnosed in Scotland. Case recruitment from consenting participants comprised a detailed questionnaire and a blood sample. In this thesis, I present the findings of the Scottish retinal detachment study that examined the incidence, demographic features, temporal incidence trends, as well as clinical and socio-economic associations of primary RRD in Scotland. From the clinical and genetic resource I assembled, I calculated the first population based estimate of the sibling recurrence risk ratio for RRD and designed and assisted in the analysis of the first case-control genome wide association study of this condition. Results from this study have estimated the annual incidence of primary RRD in Scotland to be 12.05 per 100,000 population. Based on this estimate, there are approximately 7,300 new cases annually in the United Kingdom. RRD incidence increases with age, is more common in men and right eyes, and is strongly associated with socio-economic affluence. In addition, using hospital episode data, the overall age-standardised incidence of RRD in Scotland was shown to be steadily increasing since 1987 with an average annual increase of 1.9%. Analysis of the clinical findings highlighted that the majority of RRD cases are caused by more than one retinal break; an important consideration for appropriate surgical management. Ocular trauma, previous cataract surgery, family history, and retinal degeneration are important predisposing features. In addition, over a 2 year period approximately 7% of individuals will suffer a RRD in the fellow eye representing an important risk of bilateral visual loss. Furthermore, I demonstrate that the risk of having an affected sibling with RRD is increased 2-fold given that one sibling has had the condition, substantiating a genetic component to the pathogenesis of this condition. In the final aspect of this thesis I will present the design and analysis of a two stage case-control genome-wide association study examining the role of common genetic variants and selected candidate genes in predisposing to RRD development.
|
7 |
The genetics of autism and related traitsWarrier, Varun January 2018 (has links)
Autism Spectrum Conditions (henceforth, autism) refers to a group of neurodevelopmental conditions characterized by difficulties in social interaction and communication, difficulties in adjusting to unexpected change, alongside unusually narrow interests and repetitive behaviour, and sensory hyper-sensitivity. Twin and family-based studies have consistently identified high heritabilities for autism and autistic traits, with recent studies converging at 60 – 90% heritability. Common genetic variants are thought to additively contribute to as much as 50% of the total risk for autism. In this thesis, I investigate the contribution of common genetics variants (including SNPs, and InDels) to autism and related traits. In Chapter 1, I discuss the recent advances in the field of autism genetics, focussing on the contribution of common genetic variants to the risk for autism. Chapters 2 – 7 report the results of various studies investigating the genetic correlates of autism and related traits. In Chapter 2, I surveyed the evidence for 552 candidate genes associated with autism, and conducted a meta-analysis for 58 common variants in 27 genes, investigated in at least 3 independent cohorts. Meta-analysis did not identify any SNPs that were replicably associated with autism in the Psychiatric Genetics Consortium genome-wide association study (PGC-GWAS) dataset after Bonferroni correction, suggesting that candidate gene association studies are not statistically well-powered. In Chapters 3 – 7, I conducted genome-wide association studies (GWAS) for 6 traits associated with autism: self-reported empathy (N = 46,861, Chapter 3), cognitive empathy (N = 89,553, Chapter 4), theory of mind in adolescents (N = 4,577, Chapter 5), friendship satisfaction (Neffective = 158,116) and family relationship satisfaction (Neffective = 164,112, both Chapter 6), and systemizing (N = 51,564, Chapter 7). GWAS identified significant loci for self-reported empathy, systemizing, friendship and family relationship satisfaction, and cognitive empathy. Genetic correlation analyses replicably identified a significant negative genetic correlation between autism and family relationship satisfaction and friendship satisfaction, and a significant positive genetic correlation between autism and systemizing. In addition, there was a negative genetic correlation between autism and self-reported empathy. Chapter 8 draws all of these studies together, concluding that there may be at least two independent sources of genetic risk for autism: one stemming from social traits and another from non-social traits. I discuss some future directions about how this can be leveraged using polygenic scores from multiple phenotypes to potentially stratify individuals within the autism spectrum, and both the strengths and limitations of the reported studies.
|
8 |
Genetics of a color polymorphism in Heliconius dorisBenson, Caleb 07 August 2020 (has links)
Balancing selection refers to the maintenance of multiple phenotypic variants within a population. There are a number of proposed mechanisms explaining the origin and persistence of the evolution and genetics of polymorphisms, but they largely remain unresolved in the specific instances in which they occur. This study aims to identify the genetic basis of a polymorphism in the butterfly, Heliconius doris, which displays four distinct color patterns on the dorsal hindwings of individuals. While Mullerian mimetic theory proposes that phenotypes will converge on a common, aposematic phenotype, this is not the case in Heliconius doris. We identify an interval perfectly associated with the presence/absence of the red ray phenotype, and propose potential mechanisms and genetic architecture through which this polymorphism has been allowed to persist.
|
9 |
Leveraging Demographic Differences in Incidence for Discovery and Validation of Risk Variants in GliomaOstrom, Quinn T. 02 February 2018 (has links)
No description available.
|
10 |
ITGB5 and AGFG1 variants are associated with severity of airway responsivenessHimes, Blanca, Qiu, Weiliang, Klanderman, Barbara, Ziniti, John, Senter-Sylvia, Jody, Szefler, Stanley, Lemanske, Jr, Robert, Zeiger, Robert, Strunk, Robert, Martinez, Fernando, Boushey, Homer, Chinchilli, Vernon, Israel, Elliot, Mauger, David, Koppelman, Gerard, Nieuwenhuis, Maartje, Postma, Dirkje, Vonk, Judith, Rafaels, Nicholas, Hansel, Nadia, Barnes, Kathleen, Raby, Benjamin, Tantisira, Kelan, Weiss, Scott January 2013 (has links)
BACKGROUND:Airway hyperresponsiveness (AHR), a primary characteristic of asthma, involves increased airway smooth muscle contractility in response to certain exposures. We sought to determine whether common genetic variants were associated with AHR severity.METHODS:A genome-wide association study (GWAS) of AHR, quantified as the natural log of the dosage of methacholine causing a 20% drop in FEV1, was performed with 994 non-Hispanic white asthmatic subjects from three drug clinical trials: CAMP, CARE, and ACRN. Genotyping was performed on Affymetrix 6.0 arrays, and imputed data based on HapMap Phase 2, was used to measure the association of SNPs with AHR using a linear regression model. Replication of primary findings was attempted in 650 white subjects from DAG, and 3,354 white subjects from LHS. Evidence that the top SNPs were eQTL of their respective genes was sought using expression data available for 419 white CAMP subjects.RESULTS:The top primary GWAS associations were in rs848788 (P-value 7.2E-07) and rs6731443 (P-value 2.5E-06), located within the ITGB5 and AGFG1 genes, respectively. The AGFG1 result replicated at a nominally significant level in one independent population (LHS P-value 0.012), and the SNP had a nominally significant unadjusted P-value (0.0067) for being an eQTL of AGFG1.CONCLUSIONS:Based on current knowledge of ITGB5 and AGFG1, our results suggest that variants within these genes may be involved in modulating AHR. Future functional studies are required to confirm that our associations represent true biologically significant findings.
|
Page generated in 0.0886 seconds