• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emergence of regulatory networks in simulated evolutionary processes

Drasdo, Dirk, Kruspe, Matthias 13 December 2018 (has links)
Despite spectacular progress in biophysics, molecular biology and biochemistry our ability to predict the dynamic behavior of multicellular systems under different conditions is very limited. An important reason for this is that still not enough is known about how cells change their physical and biological properties by genetic or metabolic regulation, and which of these changes affect the cell behavior. For this reason, it is difficult to predict the system behavior of multicellular systems in case the cell behavior changes, for example, as a consequence of regulation or differentiation. The rules that underlie the regulation processes have been determined on the time scale of evolution, by selection on the phenotypic level of cells or cell populations. We illustrate by detailed computer simulations in a multi-scale approach how cell behavior controlled by regulatory networks may emerge as a consequence of an evolutionary process, if either the cells, or populations of cells are subject to selection on particular features. We consider two examples, migration strategies of single cells searching a signal source, or aggregation of two or more cells within minimal multiscale models of biological evolution. Both can be found for example in the life cycle of the slime mold Dictyostelium discoideum. However, phenotypic changes that can lead to completely different modes of migration have also been observed in cells of multi-cellular organisms, for example, as a consequence of a specialization in stem cells or the de-differentiation in tumor cells. The regulatory networks are represented by Boolean networks and encoded by binary strings. The latter may be considered as encoding the genetic information (the genotype) and are subject to mutations and crossovers. The cell behavior reflects the phenotype. We find that cells adopt naturally observed migration strategies, controlled by networks that show robustness and redundancy. The model simplicity allow us to unambiguously analyze the regulatory networks and the resulting phenotypes by different measures and by knockouts of regulatory elements. We illustrate that in order to maintain a cells' phenotype in case of a knockout, the cell may have to be able to deal with contradictory information. In summary, both the cell phenotype as well as the emerged regulatory network behave as their biological counterparts observed in nature.
2

Origines génétiques de la variation de tolérance au stress au sein de populations naturelles de levures / Genetic basis of stress tolerance in natural populations of yeast

Sigwalt, Anastasie 03 June 2016 (has links)
Une question centrale de la génétique moderne est de mieux comprendre comment la variation génétique présente au sein d’individus d’une même espèce influence la diversité phénotypique et l’évolution. La levure modèle Saccharomyces cerevisiae offre une occasion unique d’apporter des éléments de réponse à cette question à travers la dissection de l’architecture génétique de la variation de tolérance à des stress environnementaux à l’échelle d’une population. Mon étude révèle un niveau supplémentaire de complexité de la relation génotype-phénotype où finalement les caractères supposés les plus simples, dits Mendéliens (déterminisme strictement monogénique) peuvent se révéler être complexes (déterminisme multigénique) selon le fond génétique en raison de l’action de gènes modificateurs, d’interactions épistatiques et/ou de suppresseurs. Toutefois, les processus évolutifs peuvent être bien différents en fonction des espèces. Afin de mieux les décrypter, je me suis également intéressée à Lachancea kluyveri, une levure phylogénétiquement distante de S. cerevisiae. Cette espèce présente une diversité génétique plus élevée et constitue une ressource encore peu exploitée. L’exploration de la diversité phénotypique et la détermination de leurs origines génétiques initiées dans cette étude sont extrêmement prometteuses et apportent de solides fondations pour l’étude à la fois de l’architecture génétique des caractères et de l’évolution de la relation génotype-phénotype au sein de diverses espèces de levures. / A central issue of modern genetics is to better understand how genetic variations between individuals within a species influence the phenotypic diversity and the evolution. The budding yeast Saccharomyces cerevisiae as a model organism offers a unique opportunity to address this issue through the dissection of the genetic architecture of stress tolerance across a population. My study reveals an additional level of complexity of the genotype-phenotype relationship. Indeed, simple Mendelian traits (monogenic determinism) may become more complex (multigenic determinism) depending on genetic background due to the action of modifier genes, epistatic interactions and / or suppressors. However, evolutionary processes can be very different depending on the species. That is why a non-conventional yeast species namely Lachancea kluyveri (formerly S. kluyveri) was also studied. This species distantly related to S. cerevisiae has a higher genetic diversity and remains a relatively unexplored resource. The exploration of the phenotypic diversity and the determination of the genetic origins initiated in this study lay foundations for the analysis of the genetic architecture of traits and the evolution of the genotype-phenotype relationship within diverse yeast species.

Page generated in 0.0981 seconds