• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geo-physical parameter forecasting on imagery{based data sets using machine learning techniques

Hussein, Eslam January 2021 (has links)
>Magister Scientiae - MSc / This research objectively investigates the e ectiveness of machine learning (ML) tools towards predicting several geo-physical parameters. This is based on a large number of studies that have reported high levels of prediction success using ML in the eld. Therefore, several widely used ML tools coupled with a number of di erent feature sets are used to predict six geophysical parameters namely rainfall, groundwater, evapora- tion, humidity, temperature, and wind. The results of the research indicate that: a) a large number of related studies in the eld are prone to speci c pitfalls that lead to over-estimated results in favour of ML tools; b) the use of gaussian mixture models as global features can provide a higher accuracy compared to other local feature sets; c) ML never outperform simple statistically-based estimators on highly-seasonal parame- ters, and providing error bars is key to objectively evaluating the relative performance of the ML tools used; and d) ML tools can be e ective for parameters that are slow- changing such as groundwater.

Page generated in 0.063 seconds