• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geochemical signals in transported regolith in response to deeply buried Cu-Au mineralisation.

Mokhtari, Ahmad Reza, School of Biological, Earth & Environmental Sciences, UNSW January 2007 (has links)
Transported regolith has the capacity to mask underlying mineralisation by restricting the migration of most trace elements to the surface. Oxidation of sulphides generates highly mobile H+ which may migrate to surface, resulting in alteration of minerals and redistribution of elements within transported regolith cover. A detailed geochemical and geophysical study has been conducted at the Mandamah Cu-Au deposit in central-western New South Wales, where sub-economic mineralisation is covered by ~50 m of transported regolith and ~30 m of in situ regolith. A shallow-penetration electromagnetic survey was undertaken on nine transects and detailed mineralogical and selective extraction/ICP-MS geochemical analysis performed on regolith samples obtained from 107 soil cores and 16 pits spanning three extensive traverses across buried mineralisation. The selective extractions used were ammonium acetate, hydroxylamine.HCl and aqua regia. A distinct vertical zonation exists in the upper two metres of the transported regolith cover across the site and is related to soil mineralogy, soil pH, electrical conductivity and the amount of selectively extractable elements using the different geochemical extractions. The upper zone of near-neutral soil pH contains organic material but little carbonate; the intermediate high-pH zone has up to 2% Mg-calcite; the underlying low-pH zone displays Fe mottling. This zonation results from precipitation of salts due to evaporation, changes in redox potentials and accumulation of organic materials, in an otherwise relatively homogeneous quartz-clay alluvium. Ground conductivity measurements and selective extraction geochemistry display a strong response to parts of the underlying mineralisation. The principal signature is the depletion of Ca, S and Na, a reduction in the cation exchange capacity, the presence of non-carbonate alkalinity and a low electrical conductivity. A model to account for these patterns has been developed and involves a "prograde" stage of alteration of clay mineralogy and a redistribution of carbonates and various trace elements due to the development of an "acid chimney" above the oxidizing mineralisation during a period of elevated water tables and a "retrograde" stage involving a redistribution of some mobile elements back into the former acid chimney zone following the onset of more arid conditions. The results of this research demonstrate that the effects of sulphide mineralisation on the upper transported regolith at Mandamah can be detected using a combination of selective extraction geochemistry and shallow depth conductivity measurements. This technique has potential application in similar arid to semi-arid terrains.
2

Geochemical signals in transported regolith in response to deeply buried Cu-Au mineralisation.

Mokhtari, Ahmad Reza, School of Biological, Earth & Environmental Sciences, UNSW January 2007 (has links)
Transported regolith has the capacity to mask underlying mineralisation by restricting the migration of most trace elements to the surface. Oxidation of sulphides generates highly mobile H+ which may migrate to surface, resulting in alteration of minerals and redistribution of elements within transported regolith cover. A detailed geochemical and geophysical study has been conducted at the Mandamah Cu-Au deposit in central-western New South Wales, where sub-economic mineralisation is covered by ~50 m of transported regolith and ~30 m of in situ regolith. A shallow-penetration electromagnetic survey was undertaken on nine transects and detailed mineralogical and selective extraction/ICP-MS geochemical analysis performed on regolith samples obtained from 107 soil cores and 16 pits spanning three extensive traverses across buried mineralisation. The selective extractions used were ammonium acetate, hydroxylamine.HCl and aqua regia. A distinct vertical zonation exists in the upper two metres of the transported regolith cover across the site and is related to soil mineralogy, soil pH, electrical conductivity and the amount of selectively extractable elements using the different geochemical extractions. The upper zone of near-neutral soil pH contains organic material but little carbonate; the intermediate high-pH zone has up to 2% Mg-calcite; the underlying low-pH zone displays Fe mottling. This zonation results from precipitation of salts due to evaporation, changes in redox potentials and accumulation of organic materials, in an otherwise relatively homogeneous quartz-clay alluvium. Ground conductivity measurements and selective extraction geochemistry display a strong response to parts of the underlying mineralisation. The principal signature is the depletion of Ca, S and Na, a reduction in the cation exchange capacity, the presence of non-carbonate alkalinity and a low electrical conductivity. A model to account for these patterns has been developed and involves a "prograde" stage of alteration of clay mineralogy and a redistribution of carbonates and various trace elements due to the development of an "acid chimney" above the oxidizing mineralisation during a period of elevated water tables and a "retrograde" stage involving a redistribution of some mobile elements back into the former acid chimney zone following the onset of more arid conditions. The results of this research demonstrate that the effects of sulphide mineralisation on the upper transported regolith at Mandamah can be detected using a combination of selective extraction geochemistry and shallow depth conductivity measurements. This technique has potential application in similar arid to semi-arid terrains.
3

Cyclic deposition of salt-laden dusts as an explanation of salinisation in a groundwater recharge zone Coleambally irrigation area Riverine plain NSW

Bell, Justin Robert William, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Salinisation of the shallow groundwater system has occurred coincident with the development of irrigation in the Coleambally Irrigation Area. Salinisation in irrigation areas has previously been attributed to the evaporative concentration of the water table; however, there are other sources of salt such as the accumulation of rainfall by vegetation and the dry deposition of salt-laden dusts. A significant store of crystalline gypsum, together with high concentrations of Na, Mg and Confidence limit, was found within the previously unsaturated zone of the Upper Shepparton Formation. The salt store was identified both within and outside of the groundwater mound; therefore evaporative concentration of the water table cannot be the source of salt. The transition from regional groundwater quality, as applied as irrigation to the ground surface, to shallow groundwater quality is simply explained by solubilisation of this salt store in the presence of soil CO2. Dating of basal palaeochannel sands indicates that the identified salt store, a profile of only 20 m, was accumulated during the last glacial cycle. Radiocarbon dating indicates that the peak in eluate salinity, at approximately 2 m below ground surface, is between 15,000 and 25,000 years old, coincident with the Last Glacial Maximum. The Last Glacial Maximum was a period of significantly enhanced aridity on the Australian continent. It was also found that the peak in eluate salinity coincided with a bi-modal particle size distribution. The bi-modal signature implies that these sediments were subject to the aeolian accession of dusts. It was found that the contribution of salt from dry deposition of dusts exceeded the contribution from rainfall by at least 1.9 to 11 times during the last glacial cycle. The results of this study imply that salt-laden dusts have, and continue to play an important role in the salinity and sodicity of soils in the Coleambally Irrigation Area and beyond.
4

Cyclic deposition of salt-laden dusts as an explanation of salinisation in a groundwater recharge zone Coleambally irrigation area Riverine plain NSW

Bell, Justin Robert William, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Salinisation of the shallow groundwater system has occurred coincident with the development of irrigation in the Coleambally Irrigation Area. Salinisation in irrigation areas has previously been attributed to the evaporative concentration of the water table; however, there are other sources of salt such as the accumulation of rainfall by vegetation and the dry deposition of salt-laden dusts. A significant store of crystalline gypsum, together with high concentrations of Na, Mg and Confidence limit, was found within the previously unsaturated zone of the Upper Shepparton Formation. The salt store was identified both within and outside of the groundwater mound; therefore evaporative concentration of the water table cannot be the source of salt. The transition from regional groundwater quality, as applied as irrigation to the ground surface, to shallow groundwater quality is simply explained by solubilisation of this salt store in the presence of soil CO2. Dating of basal palaeochannel sands indicates that the identified salt store, a profile of only 20 m, was accumulated during the last glacial cycle. Radiocarbon dating indicates that the peak in eluate salinity, at approximately 2 m below ground surface, is between 15,000 and 25,000 years old, coincident with the Last Glacial Maximum. The Last Glacial Maximum was a period of significantly enhanced aridity on the Australian continent. It was also found that the peak in eluate salinity coincided with a bi-modal particle size distribution. The bi-modal signature implies that these sediments were subject to the aeolian accession of dusts. It was found that the contribution of salt from dry deposition of dusts exceeded the contribution from rainfall by at least 1.9 to 11 times during the last glacial cycle. The results of this study imply that salt-laden dusts have, and continue to play an important role in the salinity and sodicity of soils in the Coleambally Irrigation Area and beyond.

Page generated in 0.0571 seconds