Spelling suggestions: "subject:"deological carbon storage"" "subject:"bygeological carbon storage""
1 |
Local capillary trapping in geological carbon storageSaadatpoor, Ehsan, 1982- 23 October 2012 (has links)
After the injection of CO₂ into a subsurface formation, various storage mechanisms help immobilize the CO₂. Injection strategies that promote the buoyant movement of CO₂ during the post-injection period can increase immobilization by the mechanisms of dissolution and residual phase trapping. In this work, we argue that the heterogeneity intrinsic to sedimentary rocks gives rise to another category of trapping, which we call local capillary trapping. In a heterogeneous storage formation where capillary entry pressure of the rock is correlated with other petrophysical properties, numerous local capillary barriers exist and can trap rising CO₂ below them. The size of barriers depends on the correlation length, i.e., the characteristic size of regions having similar values of capillary entry pressure. This dissertation evaluates the dynamics of the local capillary trapping and its effectiveness to add an element of increased capacity and containment security in carbon storage in heterogeneous permeable media. The overall objective is to obtain the rigorous assessment of the amount and extent of local capillary trapping expected to occur in typical storage formations. A series of detailed numerical simulations are used to quantify the amount of local capillary trapping and to study the effect of local capillary barriers on CO₂ leakage from the storage formation. Also, a research code is developed for finding clusters of local capillary trapping from capillary entry pressure field based on the assumption that in post-injection period the viscous forces are negligible and the process is governed solely by capillary forces. The code is used to make a quantitative assessment of an upper bound for local capillary trapping capacity in heterogeneous domains using the geologic data, which is especially useful for field projects since it is very fast compared to flow simulation. The results show that capillary heterogeneity decreases the threshold capacity for non-leakable storage of CO₂. However, in cases where the injected volume is more than threshold capacity, capillary heterogeneity adds an element of security to the structural seal, regardless of how CO₂ is accumulated under the seal, either by injection or by buoyancy. In other words, ignoring heterogeneity gives the worst-case estimate of the risk. Nevertheless, during a potential leakage through failed seals, a range of CO₂ leakage amounts may occur depending on heterogeneity and the location of the leak. In geologic CO₂ storage in typical saline aquifers, the local capillary trapping can result in large volumes that are sufficiently trapped and immobilized. In fact, this behavior has significant implications for estimates of permanence of storage, for assessments of leakage rates, and for predicting ultimate consequences of leakage. / text
|
2 |
Process Models for CO2 Migration and Leakage : Gas Transport, Pore-Scale Displacement and Effects of ImpuritiesBasirat, Farzad January 2017 (has links)
Geological Carbon Storage (GCS) is considered as one of the key techniques to reduce the rate of atmospheric emissions of CO2 and thereby to contribute to controlling the global warming. A successful application of a GCS project requires the capability of the formation to trap CO2 for a long term. In this context, processes related to CO2 trapping and also possible leakage of CO2 to the near surface environment need to be understood. The overall aim of this thesis is to understand the flow and transport of CO2 through porous media in the context of geological storage of CO2. The entire range of scales, including the pore scale, the laboratory scale, the field experiment scale and the industrial scale of CO2 injection operation are addressed, and some of the key processes investigated by means of experiments and modeling. First, a numerical model and laboratory experimental setup were developed to investigate the CO2 gas flow, mimicking the system in the near-surface conditions in case a leak from the storage formation should occur. The system specifically addressed the coupled flow and mass transport of gaseous CO2 both in the porous domain as well as the free flow domain above it. The comparison of experiments and modelling results showed a very good agreement indicating that the model developed can be applied to evaluate monitoring and surface detection of potential CO2 leakage. Second, the field scale CO2 injection test carried out in a shallow aquifer in Maguelone, France was analyzed and modeled. The results showed that Monte Carlo simulations accounting for the heterogeneity effects of the permeability field did capture the key observations of the monitoring data, while a homogeneous model could not represent them. Third, a numerical model based on phase-field method was developed and model simulations carried out addressing the effect of wettability on CO2-brine displacement at the pore-scale. The results show that strongly water-wet reservoirs provide a better potential for the dissolution trapping, due to the increase of interface between CO2 and brine with very low contact angles. The results further showed that strong water-wet conditions also imply a strong capillary effect, which is important for residual trapping of CO2. Finally, numerical model development and model simulations were carried out to address the large scale geological storage of CO2 in the presence of impurity gases in the CO2 rich phase. The results showed that impurity gases N2 and CH4 affected the spatial distribution of the gas (the supercritical CO2 rich phase), and a larger volume of reservoir is needed in comparison to the pure CO2 injection scenario. In addition, the solubility trapping significantly increased in the presence of N2 and CH4.
|
Page generated in 0.0548 seconds