• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 12
  • 12
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Behavior of lutetium-hafnium, samarium-neodymium and rubidium-strontium isotopic systems during processes affecting continental crust.

Barovich, Karin Marie. January 1991 (has links)
Combined Lu-Hf, Sm-Nd and Rb-Sr isotopic studies of continental crustal rocks were undertaken to assess the relative effects of secondary crustal processes on isotopic systematics of whole-rock systems. The processes studied include ductile deformation, and three cases of hydrothermal alteration, involving fluids of varying composition. The Rb-Sr system proved to be easily disturbed during all secondary processes, while Sm-Nd and Lu-Hf systems were, for the most part, resilient. These results show that Nd or Hf isotopic information obtained from old rocks that have undergone typical crustal deformational and alteration events can be counted on to be equally reliable. Nd and Hf isotopic analyses were performed on four suites of Early Archean felsic gneiss complexes from Greenland, Labrador, Swaziland, and Michigan to explore questions associated with Early Archean crustal growth. The Sm-Nd isotopic data yield initial ∊(Nd) values that are mostly consistent with published age data for the suites. Calculations show limited scatter may be attributed to subtle changes in the Sm/Nd ratio or Nd isotopic composition. The Hf isotopic results are more variable and complex than the Nd results. The relevance of the studies on isotopic mobility in the first part of this work is that they have demonstrated that Nd and Hf isotopes are equally resilient during a range of secondary crustal processes. Given the robustness of the Nd isotopic data from the Archean samples, however, it seems unreasonable to attribute the much wider variation in Hf isotopic data to post-Archean isotopic disturbances. Differences in initial Hf isotopic ratios from differing magma sources seem called for. Nd and Hf whole-rock analyses of a Late Archean pristine garnet-bearing granitoid complex from northern Canada point out the importance of garnet in fractionating Lu/Hf ratios, and in developing anomalous ∊(Hf) signatures in potential source regions. Calculations show that even short-lived upper mantle/lower crustal heterogeneities, products of previous partial melting events involving garnet fractionation, can develop the range of positive and negative ∊(Hf) values seen in the Early Archean samples.
22

Tectonostratigraphy, structure and metamorphism of the Archaean Ilangwe granite - greenstone belt south of Melmoth, Kwazulu-Natal.

Mathe, Humphrey Lawrence Mbendeni. January 1997 (has links)
The mapped area, measuring about 400m2, is situated along the southern margin of the Archaean Kaapvaal Craton south of Melmoth in KwaZulu-Natal and comprises greenstones and metasediments forming a narrow, linear E-W trending and dominantly northerly inclined belt flanked to the north and south by various granitoids and granitoid gneisses which have been differentiated for the first time in this study. This belt is here referred to as the ILANGWE GREENSTONE BELT. The lIangwe Belt rocks are grouped into the Umhlathuze Subgroup (a lower metavolcanic suite) and the Nkandla Subgroup (an upper metasedimentary suite). The former consists of: (a) the Sabiza Formation: a lower amphibolite association occurring along the southern margin of the greenstone belt; (b) the Matshansundu Formation: an eastern amphibolite-BIF association; (c) the Olwenjini Formation: an upper or northern amphibolite-banded chert-BIF association. whereas the latter is sub-divided into: (a) the Entembeni Formation: a distinctive phyllite-banded chert-BIF association occurring in the central and the eastern parts of the belt; (b) the Simbagwezi Formation: a phyllite-banded chert-amphibolite association occurring in the western part of the belt, south-east of Nkandla; (c) the Nomangci Formation: a dominantly quartzite and quartz schist formation occurring in the western part of the belt, south-east of Nkandla. The contacts between the six major tectonostratigraphic formations are tectonic. In the eastern sector of the lIangwe Belt, the lowermost metasedimentary formation, the Entembeni Formation, cuts across both the Sabiza and Matshansundu Formations (the lower formations of the Umhlathuze Subgroup) in a major deformed angular unconformity referred to as the Ndloziyana angular unconformity. In the central parts of the belt, the Entembeni Formation structurally overlies the Olwenjini Formation in what seems to be a major local unconformity (disconformity). In the western sector of the belt, the Simbagwezi Formation occurs as a structural wedge between the lower and upper formations of the Umhlathuze Subgroup. That is, it structurally overlies the Sabiza Formation and structurally underlies the Olwenjini Formation. The uppermost metasedimentary unit, the Nomangci Formation occurs as a complex series of finger-like wedges cutting and extending into the Simbagwezi Formation and in each case showing that the Nomangci Formation structurally underlies the Simbagwezi Formation. This structural repetition of lithological units is suggestive of normal dip-slip duplex structures. Palimpsest volcanic features, such as pillow structures and minor ocelli, indicate that many of the amphibolitic rocks represent metavolcanics, possibly transformed oceanic crust. This is also supported by limited major element geochemistry which suggests that the original rocks were ocean tholeiites. Evidence suggests that the talc-tremolite schists and the serpentinitic talc schists represent altered komatiites. The nature of the metasediments (represented by banded metacherts, quartzites and banded iron formations) and their similarity to those of the Barberton, Pietersburg and Nondweni greenstone complexes suggests that they were formed in relatively shallow water environments. The lIangwe magmatism is represented by different types of granitoids and granitoid gneisses and basic-ultrabasic intrusive bodies. Based on similar geochemical and mineralogical characteristics and on regional distribution, mutual associations and contact relationships, these granitoids and granitoid gneisses can be divided into three broad associations, viz: (a) The Amazula Gneiss - Nkwa/ini Mylonitic Gneiss - Nkwalini Quartzofeldspathic Flaser Gneiss Association: a migmatitic paragneiss and mylonitic to flaser gneiss association of older gneisses of Nondweni age occurring in several widely separated areas and intruded by younger granitoids. (b) The early post-Nondweni Granitoids comprising the Nkwalinye Tonalitic Gneiss (a distinctive grey gneiss intrusive into the greenstones and older gneisses) and the Nsengeni Granitoid Suite (an association of three granitoid units of batholithic proportions flanking the greenstone belt and intrusive into the greenstones, older gneisses and Nkwalinye Tonalitic Gneiss). (c) The late post-Nondweni Granitoids comprising the Impisi-Umgabhi Granitoid Suite, a batholithic microcrystic to megacrystic association of five granitoid phases/units occurring to the north and south of the greenstone belt and intrusive into the greenstones, older gneisses and early post-Nondweni granitoids. Limited major element geochemistry suggests that the granitoids and granitoid gneisses are of calc-alkaline origin and are of tonalitic, granodioritic, adamellitic and granitic composition. An igneous derivation from material located possibly at the lower crust or upper mantle is suggested. At least three major episodes of deformation (01, O2 and 03) have been recognized in the greenstones. During 01, a strong penetrative S1 tectonic foliation developed parallel to the So primary layering and bedding. This period was characterized by intense transpositional layering, recumbent and isoclinal intrafolial folding with associated shearing,thrusting and structural repetition of greenstone lithologies. These processes took place in an essentially horizontal, high strain tectonic regime. The first phase of deformation (OG1) in the migmatitic and mylonitic gneisses was also characterized by recumbent and isoclinal intrafolial folding and is remarkably similar to the 01deformational phase in the lIangwe greenstones. Structural features of the first phase of deformation suggest that it was dominated by formation of fold nappes and thrusts and was accompanied by prograde M1 medium-grade middle to upper amphibolite facies metamorphism. During D2 deformation, the subhorizontal D1 structures were refolded by new structures with steeply inclined axial planes. This resulted in the formation of superimposed Type 3 interference folding in the amphibolitic rocks and large-scale, E-W trending, doublyplunging periclinal folds in the metasediments. These periclinal folds have steeply inclined and overturned limbs and are characterized by narrow, closed elliptical outcrop patterns well-defined by extensive banded ironstones and metacherts. The second phase of deformation in the granitoids (DG 2) was characterized by steeply plunging and steeply inclined small-scale tight to isoclinal similar folds. Large-scale folds are not present in the granitoids. Evidence suggests that the second phase of deformation was a major compressional event which resulted in the large-scale upright, flattened flexural folds. It was accompanied by widespread regional greenschist metamorphism and the intrusion of the early postNondweni granitoids. The third phase of deformation produced steeply plunging small-scale folds on the limbs and axial planes of the pre-existing large-scale F2 folds and upright open folds in the granitoid terrain. This episode was characterized by the emplacement of the late postNondweni granitoids (along the D2 greenstone boundary faults) and is associated with two significant events of prograde M3 upper greenschist facies metamorphism and retrograde M3 lower greenschist facies metamorphism. Post-D3 deformation is characterized by late cross-cutting faults and the emplacement of younger basic - ultrabasic bodies. / Thesis (Ph.D.)-University of Natal, 1997.
23

Geology, geochemistry and hydrothermal alteration at the Phelps Dodge massive sulfide deposit, Matagami, Québec

Kranidiotis, Prokopis. January 1985 (has links)
No description available.
24

Migmatization and volcanic petrogenesis in the La Grande greenstone belt, Quebec

Liu, Mian. January 1985 (has links)
No description available.
25

The petrology, geochemistry and geochronology of the felsic alkaline suite of the eastern Yilgarn Block, Western Australia / Geoffrey I. Johnson

Johnson, Geoffrey I. (Geoffrey Ian) January 1991 (has links)
Typescript (Photocopy) / Includes copies of 4 papers by the author as appendix 4 (v. 1) / Errata slip inserted / Bibliography: leaves 170-192 (v. 1) / 2 v. : ill., maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Dept. of Geology and Geophysics, University of Adelaide, 1992
26

Geochemistry of the Neoarchean mafic volcanic and intrusive rocks in the Kalgoorlie Terrane, eastern Yilgarn, Western Australia : implications for geodynamic setting

Said, Nuru January 2009 (has links)
[Truncated abstract] The Neoarchean (2800 to 2600 Ma) Eastern Goldfields Superterrane (EGST) comprises elongated belts of deformed and metamorphosed volcanic and sedimentary rocks intruded by granitoids. The Superterrane is made up of five distinct tectonostratigraphic terranes. From west to east these are the Kalgoorlie, Gindalbie, Kurnalpi, Laverton and Duketon Terranes. The Kalgoorlie Terrane is characterised by 2720 to 2680 Ma marine mafic-ultramafic volcanic successions interlayered with, and overlain by, 2710 to 2660 Ma dominantly trondhjemite-tonalite-dacite (TTD) dacititic volcaniclastic rocks (Black Flag Group). The adjacent Gindalbie and Kurnalpi terranes are characterised by 2720 to 2680 Ma calc-alkaline volcanic successions representing oceanic island arcs. To the west of the EGST, the Youanmi Terrane is characterised by older, dominantly 3000 to 2900 Ma greenstone rocks and complex granitoid batholiths derived from older crustal sources. The southern Kalgoorlie Terrane comprises five elongate NNW-trending tectono-stratigraphic domains. Three principal marine komatiitic to basaltic suites, collectively referred to as the Kambalda Sequence, are present, including the wellpreserved massive to pillowed Lower and Upper Basalt Sequences, separated by the Komatiite Unit, as well as numerous dyke suites. The Lower Basalt Sequence comprises the Woolyeenyer Formation, Lunnon, Wongi, Scotia, Missouri Basalts and Burbanks and Penneshaw Formations, whereas the Upper Basalt Sequence contains the Paringa, Coolgardie, Big Dick, Devon Consols, Bent Tree, and Victorious basalts. ... Instead, the data suggest that discrete PGE-bearing phase (s) fractionated from the basaltic magmas. Such phases could be platinum group minerals (PGM; e.g. laurite) and/or alloys, or discrete PGE-rich nuggets. In summary, data on the three magmatic sequences record decompression melting of three distinct mantle sources: (1) long-term depleted asthenosphere for prevalent depleted tholeiitic and komatiitic basalts, and komatiites; (2) long-term enriched asthenosphere for Paringa Basalts and similarly enriched rocks; and (3) shortterm enriched continental lithospheric mantle (CLM) for HREE and Al-depleted dykes. Some of these rocks were contaminated by TTD-type melts. Taken with the existing geophysical and xenocrystic zircon data, the most straightforward interpretation is eruption of a zoned mantle plume at the margin of rifted continental lithosphere. The Kalgoorlie Terrane extensional basin was subsequently tectonically juxtaposed with the adjacent arc-like Gindalbie and Kurnalpi Terranes at approximately 2660 Ma at the start of orogeny in a Cordilleran-style orogen to form the EGST. Collectively, uncontaminated basalts have Nb/Th of 8-16, compared to 8-12 reported for the Lunnon basalts in a previous study. To a first approximation these asthenosphere melts are complementary to average Archean upper continental crust with Nb/Th =2, consistent with early growth of large volumes of continental crust rather than models of steady progressive growth.
27

The interplay between physical and chemical processes in the formation of world-class orogenic gold deposits in the Eastern Goldfields Province, Western Australia

Hodkiewicz, Paul January 2003 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] The formation of world-class Archean orogenic gold deposits in the Eastern Goldfields Province of Western Australia was the result of a critical combination of physical and chemical processes that modified a single and widespread ore-fluid along fluid pathways and at the sites of gold deposition. Increased gold endowment in these deposits is associated with efficient regional-scale fluid focusing mechanisms and the influence of multiple ore-depositional processes at the deposit-scale. Measurement of the complexity of geologic features, as displayed in high-quality geologic maps of uniform data density, can be used to highlight areas that influence regional-scale hydrothermal fluid flow. Useful measurements of geological complexity include fractal dimensions of map patterns, density and orientation of faults and lithologic contacts, and proportions of rock types. Fractal dimensions of map patterns of lithologic contacts and faults highlight complexity gradients. Steep complexity gradients, between domains of high and low fractal dimensions within a greenstone belt, correspond to district-scale regions that have the potential to focus the flow of large volumes of hydrothermal fluid, which is critical for the formation of significant orogenic gold mineralization. Steep complexity gradients commonly occur in greenstone belts where thick sedimentary units overly more complex patterns of lithologic contacts, associated with mafic intrusive and mafic volcanic units. The sedimentary units in these areas potentially acted as seals to the hydrothermal Mineral Systems, which resulted in fluid-pressure gradients and increased fluid flow. The largest gold deposits in the Kalgoorlie Terrane and the Laverton Tectonic Zone occur at steep complexity gradients adjacent to thick sedimentary units, indicating the significance of these structural settings to gold endowment. Complexity gradients, as displayed in surface map patterns, are an indication of three-dimensional connectivity along fluid pathways, between fluid source areas and deposit locations. Systematic changes in the orientation of crustal-scale shear zones are also significant and measurable map features. The largest gold deposits along the Bardoc Tectonic Zone and Boulder-Lefroy Shear Zone, in the Eastern Goldfields Province, occur where there are counter-clockwise changes in shear zone orientation, compared to the average orientation of the shear zone along its entire length. Sinistral movement along these shear zones resulted in the formation of district-scale dilational jogs and focused hydrothermal fluid-flow at the Golden Mile, New Celebration and Victory-Defiance deposits. Faults and lithologic contacts are the dominant fluid pathways in orogenic gold Mineral Systems, and measurements of the density of faults and contacts are also a method of quantifying the complexity of geologic map patterns on high-quality maps. Significantly higher densities of pathways in areas surrounding larger gold deposits are measurable within 20- and 5-kilometer search radii around them. Large variations in the sulfur isotopic composition of ore-related pyrites in orogenic gold deposits in the Eastern Goldfields Province are the result of different golddepositional mechanisms and the in-situ oxidation of a primary ore fluid in specific structural settings. Phase separation and wall-rock carbonation are potentially the most common mechanisms of ore-fluid oxidation and gold precipitation. The influence of multiple gold-depositional mechanisms increases the potential for significant ore-fluid oxidation, and more importantly, provides an effective means of increasing gold endowment. This explains the occurrence of negative δ34S values in ore-related pyrites in some world-class orogenic gold deposits. Sulfur isotopic compositions alone cannot uniquely define potential gold endowment. However, in combination with structural, hydrothermal alteration and fluid inclusion studies that also seek to identify multiple ore-forming processes, they can be a useful indicator. The structural setting of a deposit is also a potentially important factor controlling ore-fluid oxidation and the distribution of δ34S values in ore-related pyrites. At Victory-Defiance, the occurrence of negative δ34S(py) values in gently-dipping dilational structures, compared to more positive δ34S(py) values in steeply-dipping compressional structures, is potentially associated with different gold-depositional mechanisms that developed as a result of fluid-pressure fluctuations during different stages of the fault-valve cycle. During the pre-failure stage, when fluids are discharging from faults, fluid-rock interaction is the dominant gold-depositional mechanism. Phase separation and back-mixing of modified ore-fluid components are dominant during and immediately after faulting. Under appropriate conditions, any, or all, of these three mechanisms can oxidize orogenic gold fluids and cause gold deposition. The influence of multiple gold-depositional mechanisms during fault-valve cycles at dilational jogs, where fluid pressure fluctuations are interpreted to be most severe, can potentially explain both the large gold endowment of the giant to world-class Golden Mile, New Celebration and Victory-Defiance deposits along the Boulder-Lefroy Shear Zone, and the presence of gold-related pyrites with negative δ34S values in these deposits. This study highlights the interplay that exists between physical and chemical processes in orogenic gold Mineral Systems, during the transport of ore fluids in pathways from original fluid reservoirs to deposit sites. Potentially, a single and widespread orogenic ore-fluid could become oxidized, and lead to the formation of ore-related sulfides with variable sulfur isotopic compositions, depending on the nature and orientation of major fluid pathways, the nature of wall-rocks through which it circulates, and the precise ore-depositional processes that develop during fault-valve cycles.
28

The timing and source of gold-bearing fluids in the Laverton Greenstone Belt, Yilgarn Craton, with emphasis on the Wallaby gold deposit

Salier, Brock Peter January 2004 (has links)
[Truncated abstract] The Laverton Greenstone Belt (LGB), located in the northeastern part of the Eastern Goldfields Province (EGP) of the Yilgarn Craton, Western Australia, has a total contained gold endowment of over 690t. An important feature of the gold deposits in the LGB is their close spatial association with granitoids, with many gold deposits located adjacent to, or hosted by, granitoids. Recently-proposed genetic models for Archaean orogenic gold deposits have emphasised the role of granitoids in the formation of ore-deposits, but differ significantly in the nature of that role. Some models suggest that the granitoids are a source of ore-fluids and solutes, whereas others suggest that granitoids exert an important structural control on gold mineralisation. Such competing genetic models for gold mineralisation variably propose either a proximal-magmatic or distal-metamorphic, or less commonly distal-magmatic, source for goldbearing fluids, or mixing of fluids from multiple sources. Isotope geochemistry and geochronological studies are used to constrain the source and timing of auriferous fluids at nine gold deposits in the LGB in an attempt to differentiate between conflicting genetic models. To overcome the lack of detailed deposit-scale geological constraints inherent to any regional study, hypotheses generated from regional datasets are tested in a detailed case-study of the Wallaby gold deposit. The Pb-isotope compositions of ore-related sulphides from deposits in the LGB plot along the line representing crustal-Pb in the Norseman-Wiluna Belt of the EGP, with individual deposits clustering with other nearby deposits based on their geographic location. This trend is similar to that recorded in the Kalgoorlie-Norseman region in the southern EGP, and is consistent with a basement Pb reservoir for gold-bearing fluids. As such, data are consistent with a similar fluid source for all gold deposits. The Nd and Sr isotopic composition of goldrelated scheelite in the LGB clusters very tightly. The inferred ore-fluid composition has a slightly positive εNd, similar to ore fluids at other gold deposits in the EGP for which a proximal magmatic source is highly improbable. As such, Sr and Nd data are consistent with a similar fluid source for the gold deposits analysed in the LGB, but cannot unequivocally define that source. The median S, C and O isotopic compositions of ore minerals from all nine different gold deposits studied in the LGB fall in a very narrow range
29

Migmatization and volcanic petrogenesis in the La Grande greenstone belt, Quebec

Liu, Mian. January 1985 (has links)
No description available.
30

Geology, geochemistry and hydrothermal alteration at the Phelps Dodge massive sulfide deposit, Matagami, Québec

Kranidiotis, Prokopis. January 1985 (has links)
No description available.

Page generated in 0.1119 seconds