• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stable isotope evidence for a complex fluid evolution of the Northwestern British Columbia Coast Mountains related to terrane accretion

Moertle, Jasmine A. 19 October 2016 (has links)
<p> Stable isotope analysis of thirty-five samples from the Northwestern Coast Mountains indicates a complex fluid history related to terrane accretion, metamorphism, and magmatism. The greenschist to amphibolite facies metasedimentary rocks from the Western Metamorphic Belt have variable &delta;D and &delta;<sup> 18</sup>O values that appear to be in isotopic equilibrium with metamorphic fluids at low water-rock ratio conditions. Carbon isotope values indicate organic rich protoliths. Stable isotope values from the Coast Shear Zone indicate the involvement of both magmatic and meteoric-hydrothermal fluids during deformation, in contrast to meteoric-free fluid systems related to Au-mineralization along strike to the north (Goldfarb et al., 1988). The Coast Mountain Batholith and Central Gneiss Complex have homogeneous &delta;D and &delta;<sup> 18</sup>O values that indicate magmatic fluids at low water-rock ratio (Magaritz and Taylor, 1976). Further to the east, large amounts of meteoric-hydrothermal fluids circulated through a network of ductile-to-brittle normal faults (Andronicos et al., 2003; Heah, 1990).</p>

Page generated in 0.0919 seconds