• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • Tagged with
  • 16
  • 16
  • 16
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerical Modeling of Fluid Flow and Heat Transfers in Porous Media

Spezia, Kyle 03 February 2016 (has links)
<p> Field studies of Cordilleran metamorphic core complexes indicate that meteoric fluids permeated the upper crust down to the detachment shear zone and interacted with highly deformed and recrystallized (mylonitic) rocks. The presence of fluids in the brittle/ductile transition zone is recorded in the oxygen and hydrogen stable isotope compositions of the mylonites, and may play an important role in the thermomechanical evolution of the detachment shear zone. Geochemical data show that fluid flow in the brittle upper crust is primarily controlled by the large-scale fault-zone architecture. </p><p> We conduct finite element numerical modeling of groundwater flow in an idealized cross-section of a metamorphic core complex. The simulations investigate the effects of crust and fault permeability fields on groundwater flow. Results show that fluid migration to mid- to lower-crustal levels is fault-controlled and depends primarily on the permeability contrast between the fault zone and the crustal rocks. High fault/crust permeability ratios lead to channelized flow in the fault and shear zones, while lower ratios allow leakage of the fluids from the fault into the crust.</p>
12

The Spatial and Temporal Variability of the Potentiometric Surface in the Chicot Aquifer, Louisiana, Evaluated by a Compilation of Historical Water-Level Data

Speyrer, Fabiane Barato 03 May 2018 (has links)
<p> The Chico Aquifer System is a sole source aquifer located in the southwest region of Louisiana. A comprehensive study of the groundwater level of the Upper, Massive, and &ldquo;200-foot&rdquo; sands was undertaken to produce potentiometric surfaces for every five years from 1940 to 2015. The historical surfaces were produced for two different periods of the year; peak water-level months (non-irrigation season from January to March) and trough water-level months (irrigation season from May to July). ESRI ArcGIS extensions Arc Hydro Groundwater and Geostatistical Analyst were used to evaluate the spatial variability of the potentiometric surfaces, and ordinary kriging interpolation models were used to produce the surfaces. The cross-validation process indicated that the models were unbiased with satisfactory accuracy. From 1945 to 2015, Acadia Parish had the highest overall groundwater level decline (44.4 feet), followed by Evangeline Parish (32.6 feet), and Jefferson Davis Parish (29.63 feet). After high declines from 1945 to 1980 (33.2 feet), Calcasieu Parish showed signs of recovery since 1980 (+16.3 feet). The rate of change of the potentiometric surface for all parishes in the Chicot Aquifer System was higher from 1945 to 1980 than from 1980 to 2015. The grand average of the change in the potentiometric surface for the Chicot Aquifer System since 1945 was a decline of 23.3 feet. As society continues to improve water resource management, the results and methods presented here demonstrate an improvement in historical hindcasting that could create better plans for water management in the future.</p><p>
13

Investigating Fluid Flow in Detachment Systems through Numerical Modeling

Conlin, Daniel 13 September 2017 (has links)
<p> In this study, we take a numerical modeling approach to investigate crustal-scale fluid flow in areas of crustal extension subjected to normal and/or detachment faulting. In areas subjected to continental extension, brittle normal faulting of the upper crust leads to steep topographic gradients that provide the driving force (head gradient) and pathways (fractures) to groundwater flow. Ductile extension in the lower crust is characterized by high heat fluxes, granitic intrusion, and migmatitic gneiss domes. When downward fluid flow reaches the detachment shear zone that separates the upper and lower crust, high heat flux combined with magmatic/metamorphic fluids cause density inversions leading to buoyancy-driven upward flow. Therefore, mid-crustal shear zones represent crustal-scale hydrothermal systems characterized by buoyancy-driven fluids convection. Several geochemical studies of North American core complexes show that circulation of meteoric fluids during the development of the detachment shear zone is ubiquitous. The circulation of fluids at lower crustal levels is the result of the interplay between rock type, temperature, porosity and permeability, and fluid pathways. </p><p> We present the results of finite-element numerical models using ABAQUS/Standard that simulate groundwater flow in an idealized cross-section of a metamorphic core complex. The simulations investigate the effects of (1) crust and fault permeability and porosity, (2) width of the faults, (3) depth of the faults and shear zone, and (4) topography (head gradient) on groundwater flow. Our results show that fluid migration to mid- to lower-crustal levels is significantly fault-controlled and depends primarily on the permeability contrast between the fault zone and the crustal rock as well as the presence of a permeable shear zone, and additionally, our simulations reveal that higher fault/crust permeability contrast leads to channelized flow in the fault zone and shear zone, while lower contrast allow leakage of the fluids in the crust. </p><p>
14

An examination of the hydrological environment in Choctaw County Mississippi since 1995, with a focus on an area surrounding an industrial complex established in 1998

Foote, Jeremy Keith 27 April 2016 (has links)
<p> The population and industrial complexes of Choctaw County obtains much of its water from an aquifer system in the Tertiary age Wilcox unit of the Mississippi Embayment. Utilizing 20 years of physical chemistry (P-Chem) analysis, potentiometric groundwater records of Choctaw County public water wells as well as industrial P-Chem analysis and surface and ground water level records from an industrial complex, this study examined the changes to the hydrosphere that has taken place since 1995. Analysis of the hydrosphere shows that over the last 20 years, there has been a drop in the potentiometric surface of the Wilcox aquifer system. The analysis also shows changes in the P-Chem of the hydrosphere, changes such as a decrease in the concentration of free CO2 and chloride, and fluctuations of Alkalinity. Comparisons between groundwater records taken from the industrial complex and other locations around Choctaw County, show little variation in the physical chemistry.</p>
15

Aquifer Mergence Zones of the East Newport Mesa, Orange County, CA| A Geochemical Investigation of Hydrogeologic Structure and Groundwater Flow

Neel, Brendan R. 25 April 2019 (has links)
<p> Aquifer mergence zones are erosional unconformities that hydraulically join interlaying aquifers. In the East Newport Mesa in Orange County, Southern California, aquifer mergence zones may provide a pathway for potentially impaired low-quality groundwater of the shallow, semi-perched aquifer to migrate into the underlying regional, potable, confined aquifers. Major ion and stable isotope results imply that vertical mixing is occurring locally between the discrete shallow and deep groundwater endmembers. Vertical mixing is suggested by anomalously young radiocarbon age-dates of deep groundwater units. Radon-222 results show that shallow groundwater is discharging from the mesa, and is also actively intruded by surface water. Mixing of shallow and deep waters at these mergence zones may pose a threat to the deeper regional aquifer system. </p><p>
16

Assessing Spatial and Temporal Patterns of Groundwater Recharge on Catalina Island, California, from Soil Water Balance Modeling

Harlow, Jeanette 29 March 2018 (has links)
<p>Quantifying groundwater recharge is of crucial importance for sustainable groundwater management. While many recharge quantification techniques have been devised, few provide spatially and temporally distributed estimates for regional-scale water resource assessments. In this study, a GIS-based and USGS-developed recharge quantification tool ? the Soil Water Balance (SWB) model ? was applied to produce fine-tuned recharge constraints and document spatial and temporal dynamics of recharge. SWB has, as of yet, been tested solely in coastal and continental temperate-humid climate zones. This study expands testing of SWB to a Mediterranean climate zone, focusing on Catalina Island, California. Catalina has experienced significant water supply issues due to a prolonged drought. Using available climate, land use/land cover and hydrology data, the SWB model yields annual recharge values for the time period 2008-2014 of 0.05 mm/year to over 82 mm/year. Results of this thesis provide information on spatial and temporal patterns of groundwater recharge on Catalina Island.

Page generated in 0.0743 seconds