Spelling suggestions: "subject:"deology australia"" "subject:"deology 4ustralia""
1 |
Lateritisation and secondary gold distribution with particular reference to Western AustraliaCoxon, Brian Duncan January 1993 (has links)
Lateritisation is associated with tropical climates and geomorphic conditions of peneplanation where hydromorphic processes of weathering predominate. Laterites are products of relative (residual) and absolute(chemical) accumulation after leaching of mobile constituents. Their major element chemistry is controlled by the aluminous character of bedrock and drainage. Bauxitisation is characterised by residual gibbsite neoformation and lateritisation, by both residual accumulation and hydromorphic precipitation of goethite controlled by the redox front at the water table. The laterite forms part of a weathering profile that is underlain by saprock, saprolite, the mottled zone and overlain by a soil horizon. The secondary gold in laterites has its source invariably with mineralised bedrock. The distribution of secondary gold is controlled by mechanical eluviation and hydromorphic processes governed by organic, thiosulphate and chloride complexing. The precipitation of secondary gold is controlled by pH conditions, stability of the complexing agent and ferrolysis. Gold-bearing laterites are Cainozoic in age and are best developed on stable Archean and Proterozoic cratons that have suffered epeirogenesis since lateritisation. Mechanical eluviation increases in influence at the expense of hydromorphic processes as a positive function of topographic slope and degradation rate. Gradients greater than 10⁰ are not conducive for lateritisation, with latosols forming instead. High vertical degradation rates may lead to the development of stone lines. In the Western Australian case, post-laterite aridification has controlled the redistribution of secondary gold at levels marked by stabilisation of the receding palaeowater table. Mineable reserves of lateritic ore are located at Boddington, Westonia and Gibson toward the south-west of the Yilgarn Block. A significant controlling variable appears to be the concentration of chloride in the regolith. Based on the Boddington model, the laterite concentrates the following elements from bedrock gold lodes: i) Mo, Sb, W, Hg, Bi and Au as mobile constituents. ii) As and Pb as immobile constituents. Geochemical sampling of ferruginous lag after bedrock and laterite has provided dispersed anomalies that are easily identifiable. "Chalcophile corridors" up to 150 km in length are defined broadly by As and Sb but contain more discrete anomalies of Bi, Mo, Ag, Sn, W, Se or Au, in the Yilgarn Block. The nature of the weathered bedrock, the tabular distribution of secondary gold ore deposition and the infrastructural environment lends the lateritic regolith to low cost, open-cut mining. The western Australian lateritic-gold model perhaps can be adapted and modified for use elsewhere in the world.
|
2 |
Unravelling the tectonic framework of the Musgrave Province, Central Australia.Wade, Benjamin P. January 2006 (has links)
The importance of the Musgrave Province in continental reconstructions of Proterozoic Australia is only beginning to be appreciated. The Mesoproterozoic Musgrave Province sits in a geographically central location within Australia and is bounded by older and more isotopically evolved regions including the Gawler Craton of South Australia and Arunta Region of the Northern Territory. Understanding the crustal growth and deformation mechanisms involved in the formation of the Musgrave Province, and also the nature of the basement that separates these tectonic elements, allows for greater insight into defining the timing and processes responsible for the amalgamation of Proterozoic Australia. The ca. 1.60-1.54 Ga Musgravian Gneiss preserves geochemical and isotopic signatures related to ongoing arc-magmatism in an active margin between the North Australian and South Australian Cratons (NAC and SAC). Characteristic geochemical patterns of the Musgravian Gneiss include negative anomalies in Nb, Ti, and Y, and are accompanied by steep LREE patterns. Also characteristic of the Musgravian Gneiss is its juvenile Nd isotopic composition (ɛNd1.55 values from -1.2 to +0.9). The juvenile isotopic signature of the Musgravian Gneiss separates it from the bounding comparitively isotopically evolved terranes of the Arunta Region and Gawler Craton. The geochemical and isotopic signatures of these early Mesoproterozoic felsic rocks have similarities with island arc systems involving residual Ti-bearing minerals and garnet. Circa 1.40 Ga metasedimentary rocks of the eastern Musgrave Province also record vital evidence for determining Australia.s location and fit within a global plate reconstruction context during the late Mesoproterozoic. U-Pb detrital zircon and Sm-Nd isotopic data from these metasedimentary rocks suggests a component of derivation from sources outside of the presently exposed Australian crust. Best fit matches come from rocks originating from eastern Laurentia. Detrital zircon ages range from Palaeoproterozoic to late Mesoproterozoic, constraining the maximum depositional age of the metasediments to approximately 1.40 Ga, similar to that of the Belt Supergroup in western Laurentia. The 1.49-1.36 Ga detrital zircons in the Musgrave metasediments are interpreted to have been derived from the voluminous A-type suites of Laurentia, as this time period represents a “magmatic gap” in Australia, with an extreme paucity of sources this age recognized. The metasedimentary rocks exhibit a range of Nd isotopic signatures, with ɛNd(1.4 Ga) values ranging from -5.1 to 0.9, inconsistent with complete derivation from Australian sources, which are more isotopically evolved. The isotopically juvenile ca. 1.60-1.54 Ga Musgravian Gneiss is also an excellent candidate for the source of the abundant ca. 1.6-1.54 Ga detrital zircons within the lower sequences of the Belt Supergroup. If these interpretations are correct, they support a palaeogeographic reconstruction involving proximity of Australia and Laurentia during the pre-Rodinia Mesoproterozoic. This also increases the prospectivity of the eastern Musgrave Province to host a metamorphised equivalent of the massive Pb-Zn-Ag Sullivan deposit. The geochemical and isotopic signatures recorded in mafic-ultramafic rocks can divulge important information regarding the state of the sub continental lithospheric mantle (SCLM). The voluminous cumulate mafic-ultramafic rocks of the ca. 1.08 Ga Giles Complex record geochemical and Nd-Sr isotopic compositions consistent with an enriched parental magma. Traverses across three layered intrusions, the Kalka, Ewarara, and Gosse Pile were geochemically and isotopically analysed. Whole rock samples display variably depleted to enriched LREE patterns when normalised to chondrite ((La/Sm)N = 0.43-4.72). Clinopyroxene separates display similar depleted to enriched LREE patterns ((La/Sm)N = 0.37-7.33) relative to a chondritic source. The cumulate rocks display isotopically evolved signatures (ɛNd ~-1.0 to .5.0 and ɛSr ~19.0 to 85.0). Using simple bulk mixing and AFC equations, the Nd-Sr data of the more radiogenic samples can be modelled by addition of ~10% average Musgrave crust to a primitive picritic source, without need for an enriched mantle signature. Shallow decompressional melting of an asthenospheric plume source beneath thinned Musgravian lithosphere is envisaged as a source for the parental picritic magma. A model involving early crustal contamination within feeder zones is favoured, and consequently explorers looking for Ni-Cu-Co sulphides should concentrate on locating these feeder zones. Few absolute age constraints exist for the timing of the intracratonic Petermann Orogeny of the Musgrave Province. The Petermann Orogeny is responsible for much of the lithospheric architecture we see today within the Musgrave Province, uplifting and exhuming large parts along crustal scale E-W trending fault/shear systems. Isotopic and geochemical analysis of a suite of stratigraphic units within the Neoproterozoic to Cambrian Officer Basin to the immediate south indicate the development of a foreland architecture at ca. 600 Ma. An excursion in ɛNd values towards increasingly less negative values at this time is interpreted as representing a large influx of Musgrave derived sediments. Understanding the nature of the basement separating the SAC from the NAC and WAC is vital in constructing models of the amalgamation of Proterozoic Australia. This region is poorly understood as it is overlain by the thick sedimentary cover of the Officer Basin. However, the Coompana Block is one place where basement is shallow enough to be intersected in drillcore. The previously geochronologically, geochemically, and isotopically uncharacterised granitic gneiss of the Coompana Block represents an important period of within-plate magmatism during a time of relative magmatic quiescence in the Australian Proterozoic. U-Pb LA-ICPMS dating of magmatic zircons provides an age of ca. 1.50 Ga, interpreted as the crystallisation age of the granite protolith. The samples have distinctive A-type chemistry characterised by high contents of Zr, Nb, Y, Ga, LREE with low Mg#, Sr, CaO and HREE. ɛNd values are high with respect to surrounding exposed crust of the Musgrave Province and Gawler Craton, and range from +1.2 to +3.3 at 1.5 Ga. The tectonic environment into which the granite was emplaced is also unclear, however one possibility is emplacement within an extensional environment represented by interlayered basalts and arenaceous sediments of the Coompana Block. Regardless, the granitic gneiss intersected in Mallabie 1 represents magmatic activity during the “Australian magmatic gap” of ca. 1.52-1.35 Ga, and is a possible source for detrital ca. 1.50 zircons found within sedimentary rocks of Tasmania and Antarctica, and metasedimentary rocks of the eastern Musgrave Province. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1261003 / Thesis(PhD)-- University of Adelaide, School of Earth and Environmental Sciences, 2006
|
3 |
Unravelling the tectonic framework of the Musgrave Province, Central Australia.Wade, Benjamin P. January 2006 (has links)
The importance of the Musgrave Province in continental reconstructions of Proterozoic Australia is only beginning to be appreciated. The Mesoproterozoic Musgrave Province sits in a geographically central location within Australia and is bounded by older and more isotopically evolved regions including the Gawler Craton of South Australia and Arunta Region of the Northern Territory. Understanding the crustal growth and deformation mechanisms involved in the formation of the Musgrave Province, and also the nature of the basement that separates these tectonic elements, allows for greater insight into defining the timing and processes responsible for the amalgamation of Proterozoic Australia. The ca. 1.60-1.54 Ga Musgravian Gneiss preserves geochemical and isotopic signatures related to ongoing arc-magmatism in an active margin between the North Australian and South Australian Cratons (NAC and SAC). Characteristic geochemical patterns of the Musgravian Gneiss include negative anomalies in Nb, Ti, and Y, and are accompanied by steep LREE patterns. Also characteristic of the Musgravian Gneiss is its juvenile Nd isotopic composition (ɛNd1.55 values from -1.2 to +0.9). The juvenile isotopic signature of the Musgravian Gneiss separates it from the bounding comparitively isotopically evolved terranes of the Arunta Region and Gawler Craton. The geochemical and isotopic signatures of these early Mesoproterozoic felsic rocks have similarities with island arc systems involving residual Ti-bearing minerals and garnet. Circa 1.40 Ga metasedimentary rocks of the eastern Musgrave Province also record vital evidence for determining Australia.s location and fit within a global plate reconstruction context during the late Mesoproterozoic. U-Pb detrital zircon and Sm-Nd isotopic data from these metasedimentary rocks suggests a component of derivation from sources outside of the presently exposed Australian crust. Best fit matches come from rocks originating from eastern Laurentia. Detrital zircon ages range from Palaeoproterozoic to late Mesoproterozoic, constraining the maximum depositional age of the metasediments to approximately 1.40 Ga, similar to that of the Belt Supergroup in western Laurentia. The 1.49-1.36 Ga detrital zircons in the Musgrave metasediments are interpreted to have been derived from the voluminous A-type suites of Laurentia, as this time period represents a “magmatic gap” in Australia, with an extreme paucity of sources this age recognized. The metasedimentary rocks exhibit a range of Nd isotopic signatures, with ɛNd(1.4 Ga) values ranging from -5.1 to 0.9, inconsistent with complete derivation from Australian sources, which are more isotopically evolved. The isotopically juvenile ca. 1.60-1.54 Ga Musgravian Gneiss is also an excellent candidate for the source of the abundant ca. 1.6-1.54 Ga detrital zircons within the lower sequences of the Belt Supergroup. If these interpretations are correct, they support a palaeogeographic reconstruction involving proximity of Australia and Laurentia during the pre-Rodinia Mesoproterozoic. This also increases the prospectivity of the eastern Musgrave Province to host a metamorphised equivalent of the massive Pb-Zn-Ag Sullivan deposit. The geochemical and isotopic signatures recorded in mafic-ultramafic rocks can divulge important information regarding the state of the sub continental lithospheric mantle (SCLM). The voluminous cumulate mafic-ultramafic rocks of the ca. 1.08 Ga Giles Complex record geochemical and Nd-Sr isotopic compositions consistent with an enriched parental magma. Traverses across three layered intrusions, the Kalka, Ewarara, and Gosse Pile were geochemically and isotopically analysed. Whole rock samples display variably depleted to enriched LREE patterns when normalised to chondrite ((La/Sm)N = 0.43-4.72). Clinopyroxene separates display similar depleted to enriched LREE patterns ((La/Sm)N = 0.37-7.33) relative to a chondritic source. The cumulate rocks display isotopically evolved signatures (ɛNd ~-1.0 to .5.0 and ɛSr ~19.0 to 85.0). Using simple bulk mixing and AFC equations, the Nd-Sr data of the more radiogenic samples can be modelled by addition of ~10% average Musgrave crust to a primitive picritic source, without need for an enriched mantle signature. Shallow decompressional melting of an asthenospheric plume source beneath thinned Musgravian lithosphere is envisaged as a source for the parental picritic magma. A model involving early crustal contamination within feeder zones is favoured, and consequently explorers looking for Ni-Cu-Co sulphides should concentrate on locating these feeder zones. Few absolute age constraints exist for the timing of the intracratonic Petermann Orogeny of the Musgrave Province. The Petermann Orogeny is responsible for much of the lithospheric architecture we see today within the Musgrave Province, uplifting and exhuming large parts along crustal scale E-W trending fault/shear systems. Isotopic and geochemical analysis of a suite of stratigraphic units within the Neoproterozoic to Cambrian Officer Basin to the immediate south indicate the development of a foreland architecture at ca. 600 Ma. An excursion in ɛNd values towards increasingly less negative values at this time is interpreted as representing a large influx of Musgrave derived sediments. Understanding the nature of the basement separating the SAC from the NAC and WAC is vital in constructing models of the amalgamation of Proterozoic Australia. This region is poorly understood as it is overlain by the thick sedimentary cover of the Officer Basin. However, the Coompana Block is one place where basement is shallow enough to be intersected in drillcore. The previously geochronologically, geochemically, and isotopically uncharacterised granitic gneiss of the Coompana Block represents an important period of within-plate magmatism during a time of relative magmatic quiescence in the Australian Proterozoic. U-Pb LA-ICPMS dating of magmatic zircons provides an age of ca. 1.50 Ga, interpreted as the crystallisation age of the granite protolith. The samples have distinctive A-type chemistry characterised by high contents of Zr, Nb, Y, Ga, LREE with low Mg#, Sr, CaO and HREE. ɛNd values are high with respect to surrounding exposed crust of the Musgrave Province and Gawler Craton, and range from +1.2 to +3.3 at 1.5 Ga. The tectonic environment into which the granite was emplaced is also unclear, however one possibility is emplacement within an extensional environment represented by interlayered basalts and arenaceous sediments of the Coompana Block. Regardless, the granitic gneiss intersected in Mallabie 1 represents magmatic activity during the “Australian magmatic gap” of ca. 1.52-1.35 Ga, and is a possible source for detrital ca. 1.50 zircons found within sedimentary rocks of Tasmania and Antarctica, and metasedimentary rocks of the eastern Musgrave Province. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1261003 / Thesis(PhD)-- University of Adelaide, School of Earth and Environmental Sciences, 2006
|
4 |
Unravelling the tectonic framework of the Musgrave Province, Central Australia.Wade, Benjamin P. January 2006 (has links)
The importance of the Musgrave Province in continental reconstructions of Proterozoic Australia is only beginning to be appreciated. The Mesoproterozoic Musgrave Province sits in a geographically central location within Australia and is bounded by older and more isotopically evolved regions including the Gawler Craton of South Australia and Arunta Region of the Northern Territory. Understanding the crustal growth and deformation mechanisms involved in the formation of the Musgrave Province, and also the nature of the basement that separates these tectonic elements, allows for greater insight into defining the timing and processes responsible for the amalgamation of Proterozoic Australia. The ca. 1.60-1.54 Ga Musgravian Gneiss preserves geochemical and isotopic signatures related to ongoing arc-magmatism in an active margin between the North Australian and South Australian Cratons (NAC and SAC). Characteristic geochemical patterns of the Musgravian Gneiss include negative anomalies in Nb, Ti, and Y, and are accompanied by steep LREE patterns. Also characteristic of the Musgravian Gneiss is its juvenile Nd isotopic composition (ɛNd1.55 values from -1.2 to +0.9). The juvenile isotopic signature of the Musgravian Gneiss separates it from the bounding comparitively isotopically evolved terranes of the Arunta Region and Gawler Craton. The geochemical and isotopic signatures of these early Mesoproterozoic felsic rocks have similarities with island arc systems involving residual Ti-bearing minerals and garnet. Circa 1.40 Ga metasedimentary rocks of the eastern Musgrave Province also record vital evidence for determining Australia.s location and fit within a global plate reconstruction context during the late Mesoproterozoic. U-Pb detrital zircon and Sm-Nd isotopic data from these metasedimentary rocks suggests a component of derivation from sources outside of the presently exposed Australian crust. Best fit matches come from rocks originating from eastern Laurentia. Detrital zircon ages range from Palaeoproterozoic to late Mesoproterozoic, constraining the maximum depositional age of the metasediments to approximately 1.40 Ga, similar to that of the Belt Supergroup in western Laurentia. The 1.49-1.36 Ga detrital zircons in the Musgrave metasediments are interpreted to have been derived from the voluminous A-type suites of Laurentia, as this time period represents a “magmatic gap” in Australia, with an extreme paucity of sources this age recognized. The metasedimentary rocks exhibit a range of Nd isotopic signatures, with ɛNd(1.4 Ga) values ranging from -5.1 to 0.9, inconsistent with complete derivation from Australian sources, which are more isotopically evolved. The isotopically juvenile ca. 1.60-1.54 Ga Musgravian Gneiss is also an excellent candidate for the source of the abundant ca. 1.6-1.54 Ga detrital zircons within the lower sequences of the Belt Supergroup. If these interpretations are correct, they support a palaeogeographic reconstruction involving proximity of Australia and Laurentia during the pre-Rodinia Mesoproterozoic. This also increases the prospectivity of the eastern Musgrave Province to host a metamorphised equivalent of the massive Pb-Zn-Ag Sullivan deposit. The geochemical and isotopic signatures recorded in mafic-ultramafic rocks can divulge important information regarding the state of the sub continental lithospheric mantle (SCLM). The voluminous cumulate mafic-ultramafic rocks of the ca. 1.08 Ga Giles Complex record geochemical and Nd-Sr isotopic compositions consistent with an enriched parental magma. Traverses across three layered intrusions, the Kalka, Ewarara, and Gosse Pile were geochemically and isotopically analysed. Whole rock samples display variably depleted to enriched LREE patterns when normalised to chondrite ((La/Sm)N = 0.43-4.72). Clinopyroxene separates display similar depleted to enriched LREE patterns ((La/Sm)N = 0.37-7.33) relative to a chondritic source. The cumulate rocks display isotopically evolved signatures (ɛNd ~-1.0 to .5.0 and ɛSr ~19.0 to 85.0). Using simple bulk mixing and AFC equations, the Nd-Sr data of the more radiogenic samples can be modelled by addition of ~10% average Musgrave crust to a primitive picritic source, without need for an enriched mantle signature. Shallow decompressional melting of an asthenospheric plume source beneath thinned Musgravian lithosphere is envisaged as a source for the parental picritic magma. A model involving early crustal contamination within feeder zones is favoured, and consequently explorers looking for Ni-Cu-Co sulphides should concentrate on locating these feeder zones. Few absolute age constraints exist for the timing of the intracratonic Petermann Orogeny of the Musgrave Province. The Petermann Orogeny is responsible for much of the lithospheric architecture we see today within the Musgrave Province, uplifting and exhuming large parts along crustal scale E-W trending fault/shear systems. Isotopic and geochemical analysis of a suite of stratigraphic units within the Neoproterozoic to Cambrian Officer Basin to the immediate south indicate the development of a foreland architecture at ca. 600 Ma. An excursion in ɛNd values towards increasingly less negative values at this time is interpreted as representing a large influx of Musgrave derived sediments. Understanding the nature of the basement separating the SAC from the NAC and WAC is vital in constructing models of the amalgamation of Proterozoic Australia. This region is poorly understood as it is overlain by the thick sedimentary cover of the Officer Basin. However, the Coompana Block is one place where basement is shallow enough to be intersected in drillcore. The previously geochronologically, geochemically, and isotopically uncharacterised granitic gneiss of the Coompana Block represents an important period of within-plate magmatism during a time of relative magmatic quiescence in the Australian Proterozoic. U-Pb LA-ICPMS dating of magmatic zircons provides an age of ca. 1.50 Ga, interpreted as the crystallisation age of the granite protolith. The samples have distinctive A-type chemistry characterised by high contents of Zr, Nb, Y, Ga, LREE with low Mg#, Sr, CaO and HREE. ɛNd values are high with respect to surrounding exposed crust of the Musgrave Province and Gawler Craton, and range from +1.2 to +3.3 at 1.5 Ga. The tectonic environment into which the granite was emplaced is also unclear, however one possibility is emplacement within an extensional environment represented by interlayered basalts and arenaceous sediments of the Coompana Block. Regardless, the granitic gneiss intersected in Mallabie 1 represents magmatic activity during the “Australian magmatic gap” of ca. 1.52-1.35 Ga, and is a possible source for detrital ca. 1.50 zircons found within sedimentary rocks of Tasmania and Antarctica, and metasedimentary rocks of the eastern Musgrave Province. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1261003 / Thesis(PhD)-- University of Adelaide, School of Earth and Environmental Sciences, 2006
|
5 |
GEOLOGY OF THE EASTERN PART OF THE BURR DIAPIR, NORTHERN FLINDERS RANGES,SOUTH AUSTRALIAKlingmueller, Lothar Max Ludwig, 1936-, Klingmueller, Lothar Max Ludwig, 1936- January 1971 (has links)
No description available.
|
6 |
Three-dimensional stratal development of a carbonate-siliciclastic sedimentary regime, Northern Carnarvon Basin, Northwest AustraliaCathro, Donna Louise 28 August 2008 (has links)
Not available / text
|
7 |
Permian-Triassic stable isotope stratigraphy of AustraliaMorante, Richard January 1996 (has links)
"September, 1995" / Thesis (Ph.D.) -- Macquarie University, School of Earth Sciences, 1996. / Bibliography: leaves 171-183. / Introduction -- Australian ð¹³Corg-isotope profiles about the Permian-Triassic (P/TR) boundary -- Strontium isotope seawater curve in the late Permian of Australia -- ð¹³Cco₃ AND ð¹⁸Oco₃ seawater profiles through the Permian-Triassic of Australasia -- Paleomagnetic stratigraphy about the Permian/Triassic boundary in Australia -- Synthesis. / The Permian-Triassic boundary mass extinction is the largest in the Phanerozoic and therefore is the major event in the Phanerozoic. The mass extinction cause is problematical but studying global geochemical and geophysical signatures about the Permian-Triassic boundary can provide insights into the cause of the mass extinction. Global events about the Permian-Triassic boundary are marked by changes in: ð¹³C values of carbon ; ⁸⁷Sr/⁸⁶Sr in unaltered marine calcite ; magnetic polarity. -- This study aims to identify these features in the sedimentary record and to test the ca libration of the Australian biostratigraphical schemes to the global geological timescale. The following features are found in the Permian-Triassic sediments of Australia: a ð¹³Corg in Total Organic Carbon excursion in 12 marine and nonmarine sections from Northwest to Eastern Australia ; a ⁸⁷Sr/⁸⁶Sr minimum in a composite section mainly from the Bowen Basin ; a magnetic polarity reversal in the Cooper Basin, central Australia. The Australian sections are thus time correlated, as follows: The negative ð¹³Corg excursion indicates the Permian-Triassic boundary and occurs: 1) in Eastern and Central Australia at the change from coal measures to barren measures with red beds at the beginning of the Early Triassic coal gap; 2) in Northwest Australia about the boundary between the Hyland Bay Formation and the Mount Goodwin Formation in the Bonaparte Basin and at the boundary between the Hardman Formation and the Blina Shale in the Canning Basin. The base of the negative ð¹³Corg excursion lies at or near the base of the Protohaploxypinus microcorpuspalynological zone. The ⁸⁷Sr/⁸⁶Sr minimum determined about the Guadalupian/Ochoan stage boundary in North America is found in the Bowen Basin about the boundary between the Ingelara and Peawaddy Formations. The ð¹³Corg excursion in the Cooper Basin is near a magnetic reversal within the Permo-Triassic mixed superchron. The implications of these findings include: confirmation of the traditional placement of the Permian-Triassic boundary at the coal measures/barren measures with redbeds boundary in Eastern Australia ; the linking of the the Permian-Triassic boundary to a mass extinction of plant species on land and the beginning of the Triassic coal gap indicated by the Falcisporites Superzone base that is coincident with the negative ð¹³Corg excursion ; a mass extinction causal model that links the ⁸⁷Sr/⁸⁶Sr minimum determined about the Guadalupian/Ochoan stage boundary to a fall in sealevel that led to changing global environmental conditions. The model invokes greenhouse warming as a contributing cause of the mass extinction. / Mode of access: World Wide Web. / xii, 183 leaves ill., maps
|
8 |
Gold-bearing volcanic breccia complexes related to carboniferous-permian magmatism, North Queensland, AustraliaMujdrica, Stefan January 1994 (has links)
Gold-bearing volcanic breccia complexes are the major sources of gold in the Tasman Fold Belt System in north Queensland. The Tasman Fold Belt System represents the site of continental accretion as a series of island-arcs and intra-arc basins with accompanying thick sedimentation, volcanism, plutonism, tectonism and mineralisation. In north Queensland, the fold belt system comprises the Hodgkinson-Broken River Fold Belt, Thomson Fold Belt, New England Fold Belt and the Georgetown Inlier. The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusivesof the transitional tectonic stage of the fold belt system. The formation and subsequent gold mineralisation of volcanic breccia complexes are related to Permo-Carboniferous magmatism within the Thomson Fold Belt and Georgetown Inlier. The two most important producing areas are at Mount Leyshon and Kidston mines, which are high tonnage, low-grade gold deposits. The Mount Leyshon breccia complex was emplaced along the contact between CambroOrdovician metasedimentary and metavolcanic rocks, and Ordovician-Devonian I-type granitoids of the Lolworth-Ravenswood Block. The Kidston breccia complex is located on a major lithological contact between the Early to Middle Proterozoic . Einasleigh Metamorphics and the Silurian-Devonian Oak River Granodiorite. The principal hosts to the gold mineralisation at the Mount Leyshon and Kidston deposits, are breccia pipes associated with several episodes of porphyry intrusives. The goldbearing magmatic-hydrothermal and phreatomagmatic breccias post-date the development of a porphyry-type protore. The magmatic-hydrothermal breccias were initially emplaced without the involvement of meteoric-hydrothermal fluids, within a closed system. Later magma impulses reached higher levels in the cooled upper magma chamber, where meteoric water invaded the fracture system. This produced an explosive emplacement of phreatomagmatic breccias, as seen at Mount Leyshon. Widespread sericitisation and pyrite mineralisation are common, with cavity fill, disseminated and fracturelveincontrolled gold and base metal sulphides. The Kidston and Mount Leyshon breccia complexes have hydrothermal alteration and mineralisation characteristics of the 'Lowell-Guilbert Model'. However, the argillic zone is generally not well defined. The gold travelled as chloride complexes with the hydrothermal fluids before being deposited into cavities and fractures of the breccias. Later stage epithermal deposits formed at the top of the breccia complexes that were dominantly quartz-adularia-sericite-type. The erosion, collapse and further intrusion of later porphyry phases allowed the upper parts of the breccia complexes to mix with the lower hydrothermal systems. Exploration for gold-related volcanic breccia complexes is directed at identifying hydrothermal alteration. This is followed by detailed ground studies including geological, mineralogical, petrological and geochemical work, with the idea of constructing a 'model' that can be tested with subsequent subsurface work (e.g. drilling). Geomorphology, remote sensing, geochemistry, geophysics, petrology, isotopes and fluid inclusions are recommended exploration techniques for the search of gold-bearing volcanic breccia complexes. Spectral remote sensing has especially become an important tool for the detection of hydrothermal alteration. Clay and iron minerals of the altered rock, within the breccia complexes, have distinctive spectral characteristics that can be recognisable in multispectral images from the Landsat thematic mapper. The best combination of bands, when using TM remote sensing for hydrothermally altered rock, are 3/5/7 or 4/5/7. The breccia complexes have exploration signatures represented as topographic highs, emplaced within major structural weaknesses, associated I-type granitic batholiths, early potassic alteration with overprint of sericitic alteration, and an associated radiometric high and magnetic low. The exploration for gold-bearing volcanic breccia complex deposits cannot be disregarded, because of the numerous occurrences that are now the major gold producers in north Queensland.
|
9 |
Australian Quaternary studies : a compilation of papers and documents submitted for the degree of Doctor of Science in the Faculty of Science, University of AdelaideDe Deckker, P. (Patrick) January 2002 (has links) (PDF)
"April 2002" Includes bibliographical references and list of the publications and papers submitted. Pt. 1: section 1. Ostracod taxonomy and ecology -- section 2. Limnology of salt lakes -- section 3. Ostracod palaoecology - Quaternary environments -- section 4. Palaolimnology - Quaternary paleoenvironments and geology -- pt. 2: section 5. Geochemistry of ostracod shells -- section 6. Palaeoceanography Contains the majority of the author's scientific publications. Aims at reconstructing Quaternary paleoenvironments, mostly from the Australian region, using the fossil remains of organisms as well as new geochemical techniques.
|
10 |
Australian Quaternary studies : a compilation of papers and documents submitted for the degree of Doctor of Science in the Faculty of Science, University of Adelaide / by Patrick De Deckker.De Deckker, P. (Patrick) January 2002 (has links)
"April 2002" / Includes bibliographical references and list of the publications and papers submitted. / 2 v. (various pagings) : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Contains the majority of the author's scientific publications. Aims at reconstructing Quaternary paleoenvironments, mostly from the Australian region, using the fossil remains of organisms as well as new geochemical techniques. / Thesis (D.Sc.)--University of Adelaide, Dept. of Geology and Geophysics, 2002
|
Page generated in 0.0778 seconds