• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 14
  • 14
  • 14
  • 13
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Middle and upper jurassic foraminifera and radiolaria of Scotland : an integrated biostratigraphical and palaeoenvironmental approach

Gregory, Francis John January 1995 (has links)
This study is an integrated biostratigraphical and palaeoenvironmental analysis of foraminiferal and radiolarian distribution from all the major Middle and Upper Jurassic marine deposits of Scotland. These sampled sites are divided between two basins with Staffin Bay and Bearreraig Bay within the Inner Hebrides Basin, North West Scotland; and Brora, Balintore, Helmsdale and Eathie Haven representing the Inner Moray Firth Basin, North East Scotland.A detailed taxonomic section is presented, which provides the means of comparison of microfaunal events between sites. A combined total of 212 species are described, of which 183 are foraminifera and 29 radiolaria; this includes a total of 23 species not previously recorded, comprising 16 foraminiferal and 7 radiolarian taxa.A Callovian to Lower Kimmeridgian biozonal scheme, the first detailed attempted for the onshore UK, is constructed primarily using the Staffin Bay succession as the type section. It is based upon an integration of distinct foraminiferal and radiolarian taxa and events. This microbiostratigraphy is implicitly tied to the Boreal type ammonite scheme and comprises a total of 9 biozones and 12 sub-biozones. The new biozones are then correlated and compared with the other Scottish sites as well as other world-wide schemes.A sequential palaeoenvironmental analysis is outlined, firstly by pinpointing microfaunal assemblages that are based upon a combination of the distribution of the major suborders, the species diversity and faunal abundances, as well as integrating the facies types and probable prevalent substrate conditions. These assemblages are then used to define palaeoenvironmental models for each recorded succession, and are related to prevailing substrate and sea water conditions and distance from the 'palaeoshoreline'. As the assemblages are shown to reflect particular conditions this allows a generalised basin development model to be assessed, related to sea-level changes (transgressions and regressions). All the sites are subsequently correlated palaeoenvironmentally.The relevance of facies dependant distribution is also examined, particularly for benthic foraminiferids. The main conclusion reached is that facies dependence restricts the occurrences of taxa. However, this is not a constant feature as some specific taxa show the ability to colonise several facies types. It is this factor that permits a biostratigraphy to be constructed. Overall, assemblages appear to be related directly to a particular facies, which permits palaeoenvironmental changes to be assessed.Finally the extensive Middle and Upper Jurassic literature is examined and a generalised world wide biogeography constructed. Four provinces are defined based on characteristic foraminiferal and radiolarian assemblages.
12

Mineral dissolution in silicate melts

Curry, Richard M. January 1990 (has links)
Quartz and orthopyroxene in mafic rocks are commonly observed to be surrounded by fringes of granular pyroxene, and of olivine and clinopyroxene, respectively. This study reproduces the conditions of formation of these textures, and investigates their origins, kinetics and phase relations. Pieces of silica glass or crystals of orthopyroxene were dissolved into tholeiitic and slightly alkaline basalts, suspended from wire loops in an atmospheric pressure quenching furnace, and run for 10 minutes to 32 days at subliquidus temperatures between 1120° and 1190°C and oxygen fugacities close to the QFM buffer. Polished sections of charges were examined primarily by backscattered electron imagery and by microprobe analysis. The textures developed in silica dissolution experiments consist of fringes of elongate skeletal pyroxenes radially arranged around the silica. The pyroxenes first nucleate on the surface of the silica. As dissolution continues, growth continues mostly on existing crystals, rather than by the nucleation of additional crystals. Dissolution rates for silica range from 2.8*10⁻¹¹ to 4.4*10⁻¹⁰ms⁻¹, and are time-independent until growth of the pyroxene fringe hinders transport processes in the melt. This causes dissolution to slow down, until it ceases altogether after 3 to 8 days. A silica-rich layer of melt forms around the surface of charges run at higher temperatures, suggesting that convection driven by variations in surface tension may operate in the charges. The textures developed in orthopyroxene dissolution experiments consist of granular olivines, some of which nucleate on the pyroxene surface, whereas others nucleate within the pyroxene as a result of the decomposition of included phases. With time, olivine crystals become connected and form complex grain shapes. Dissolution rates for orthopyroxene range from 1.7*10⁻¹¹ to 1.2*10⁻⁹ ms⁻¹. At higher temperatures dissolution rates are constant, but at lower temperatures dissolution is time-dependent. Unlike silica dissolution, orthopyroxene dissolution does not cease as a result of continued neocryst growth hindering melt transport, indicating that the fringe remains permeable. For both systems, the neocryst compositions are strongly dependent on the chemistry of the melt formed at the interface between the dissolving crystal and the bulk melt, and the neocrysts may be metastable with respect to the bulk melt. Chemical equilibration of olivine neocrysts with time is observed for longer experiments. Textural equilibration of olivine grains occurs by the processes of liquid-phase sintering in runs longer than 12 hours. Subliquidus dissolution data are applied to textures from natural samples collected from dykes, lava flows and lava lakes, to estimate the residence time of reacted crystals; values range from 0.6 to 208 days for reacted quartz, and from 0.7 to 462 days for reacted orthopyroxenes. The rates of cooling of the magma and the size of the magma body in which the reaction occurred are also estimated.
13

Applications of complex adaptive systems approaches to coastal systems

Kingston, Kenneth Samuel January 2003 (has links)
This thesis investigates the application of complex adaptive systems approaches (e.g. Artificial Neural Networks and Evolutionary Computation) to the study of coastal hydrodynamic and morphodynamic behaviour. Traditionally, nearshore morphological coastal system studies have developed an understanding of those physical processes occurring on both short temporal, and small spatial scales with a large degree of success. The associated approaches and concepts used to study the coastal system at these scales have primarily been linear in nature. However, when these approaches to studying the coastal system are extended to investigating larger temporal and spatial scales, which are commensurate with the aims of coastal management, results have had less success. The lack of success in developing an understanding of large scale coastal behaviour is to a large extent attributable to the complex behaviour associated with the coastal system. This complexity arises as a result of both the stochastic and chaotic nature of the coastal system. This allows small scale system understanding to be acquired but prevents the larger scale behaviour to be predicted effectively. This thesis presents four hydro-morphodynamic case studies to demonstrate the utility of complex adaptive system approaches for studying coastal systems. The first two demonstrate the application of Artificial Neural Networks, whilst the latter two illustrate the application of Evolutionary Computation. Case Study #1 considers the nature of the discrepancy between the observed location of wave breaking patterns over submerged sandbars and the actual sandbar locations. Artificial Neural Networks were able to quantitatively correct the observed locations to produce reliable estimates of the actual sand bar locations. Case Study #2 considers the development of an approach for the discrimination of shoreline location in video images for the production of intertidal maps of the nearshore region. In this case the system modelled by the Artificial Neural Network is the nature of the discrimination model carried out by the eye in delineating a shoreline feature between regions of sand and water. The Artificial Neural Network approach was shown to robustly recognise a range of shoreline features at a variety of beaches and hydrodynamic settings. Case Study #3 was the only purely hydrodynamic study considered in the thesis. It investigated the use of Evolutionary Computation to provide means of developing a parametric description of directional wave spectra in both reflective and nonreflective conditions. It is shown to provide a unifying approach which produces results which surpassed those achieved by traditional analysis approaches even though this may not strictly have been considered as a fiddly complex system. Case Study #4 is the most ambitious application and addresses the need for data reduction as a precursor when trying to study large scale morphodynamic data sets. It utilises Evolutionary Computation approaches to extract the significant morphodynamic variability evidenced in both directly and remotely sampled nearshore morphologies. Significant data reduction is achieved whilst reWning up to 90% of the original variability in the data sets. These case studies clearly demonstrate the ability of complex adaptive systems to be successfully applied to coastal system studies. This success has been shown to equal and sometimess surpass the results that may be obtained by traditional approaches. The strong performance of Complex Adaptive System approaches is closely linked to the level of complexity or non-linearity of the system being studied. Based on a qualitative evaluation, Evolutionary Computation was shown to demonstrate an advantage over Artificial Neural Networks in terms of the level of new insights which may be obtained. However, utility also needs to consider general ease of applicability and ease of implementation of the study approach. In this sense, Artificial Neural Networks demonstrate more utility for the study of coastal systems. The qualitative assessment approach used to evaluate the case studies in this thesis, may be used as a guide for choosing the appropriateness of either Artificial Neural Networks or Evolutionary Computation for future coastal system studies.
14

Digital image processing techniques and their application to the automation of palynology

Treloar, Walter John January 1992 (has links)
No description available.

Page generated in 0.1034 seconds