• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic modification of part geometries subject to manufacturing constraints using fuzzy logic

Bass, Henry Morgan 07 October 2005 (has links)
There is frequently a need for algorithms capable of automatic modification of geometric models in response to manufacturing process constraints. Designers typically initiate product models using ideal, exact geometry; however, several non-traditional manufacturing processes frequently require slight modifications to the ideal model to accommodate various manufacturing process constraints. These modifications can be difficult, complex, and tedious to compute. For instance, metal-ceramic brazing requires adjustments to the part geometry primarily to accommodate thermal expansion and to allow for the insertion of a narrow braze-filler gap. These adjustments depend on the particular geometry, material properties, and processing parameters. Any modification to these product model parameters necessitates extensive recomputation to reestablish a manufacturable part geometry. This thesis demonstrates in part the integration of geometry into the overall product model by having the non-geometric parts of the product model provide feedback to the geometry by means of automatically modifying its shape. The methodology is demonstrated in a prototype model which introduces the concept of auxiliary geometric structures. In particular, the auxiliary geometric structures provide a mapping between the designer's intent and the part geometry described in the solid model. The designer's intent is represented in a rule base for metal-ceramic brazing that is controlled by fuzzy logic. This rule base aids the user in quantifying and generating from the auxiliary geometric structures the geometric modifications needed to conform with a complex set of rules derived from both analytic and empirical work in metal-ceramic brazing / Master of Science
2

Study of the Effects of Geometric Parameters and Yaw Angle on Drag Generation in Clean Rectangular Cavities

Shiyani, Dhaval 24 September 2018 (has links)
No description available.

Page generated in 0.1021 seconds