Spelling suggestions: "subject:"geometric multigrid methods"" "subject:"eometric multigrid methods""
1 |
A Finite-Element Coarse-GridProjection Method for Incompressible FlowsKashefi, Ali 23 May 2017 (has links)
Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure correction schemes used for the incompressible Navier Stokes flow computations. This version is validated on standard test cases with realistic boundary conditions using unstructured triangular meshes. We also pioneer investigations of the effects of CGP on the accuracy of the pressure field. It is found that although CGP reduces the pressure field accuracy, it preserves the accuracy of the pressure gradient and thus the velocity field, while achieving speedup factors ranging from approximately 2 to 30. Exploring the influence of boundary conditions on CGP, the minimum speedup occurs for velocity Dirichlet boundary conditions, while the maximum speedup occurs for open boundary conditions. We discuss the CGP method as a guide for partial mesh refinement of incompressible flow computations and show its application for simulations of flow over a backward facing step and flow past a cylinder. / Master of Science / Coarse Grid Projection (CGP) methodology is a new multigrid technique applicable to pressure projection methods for solving the incompressible Navier-Stokes equations. In the CGP approach, the nonlinear momentum equation is evolved on a fine grid, and the linear pressure Poisson equation is solved on a corresponding coarsened grid. Mapping operators transfer the data between the grids. Hence, one can save a considerable amount of CPU time due to reducing the resolution of the pressure filed while maintaining excellent to reasonable accuracy, depending on the level of coarsening.
|
2 |
Automatic Optimization of Geometric Multigrid Methods using a DSL ApproachVasista, Vinay V January 2017 (has links) (PDF)
Geometric Multigrid (GMG) methods are widely used in numerical analysis to accelerate the convergence of partial differential equations solvers using a hierarchy of grid discretizations. These solvers find plenty of applications in various fields in engineering and scientific domains, where solving PDEs is of fundamental importance. Using multigrid methods, the pace at which the solvers arrive at the solution can be improved at an algorithmic level. With the advance in modern computer architecture, solving problems with higher complexity and sizes is feasible - this is also the case with multigrid methods. However, since hardware support alone cannot achieve high performance in execution time, there is a need for good software that help programmers in doing so.
Multiple grid sizes and recursive expression of multigrid cycles make the task of manual program optimization tedious and error-prone. A high-level language that aids domain experts to quickly express complex algorithms in a compact way using dedicated constructs for multigrid methods and with good optimization support is thus valuable. Typical computation patterns in a GMG algorithm includes stencils, point-wise accesses, restriction and interpolation of a grid. These computations can be optimized for performance on modern architectures using standard parallelization and locality enhancement techniques.
Several past works have addressed the problem of automatic optimizations of computations in various scientific domains using a domain-specific language (DSL) approach. A DSL is a language with features to express domain-specific computations and compiler support to enable optimizations specific to these computations. Halide and PolyMage are two of the recent works in this direction, that aim to optimize image processing pipelines. Many computations like upsampling and downsampling an image are similar to interpolation and restriction in geometric multigrid methods.
In this thesis, we demonstrate how high performance can be achieved on GMG algorithms written in the PolyMage domain-specific language with new optimizations we added to the compiler. We also discuss the implementation of non-trivial optimizations, on PolyMage compiler, necessary to achieve high parallel performance for multigrid methods on modern architectures. We realize these goals by:
• introducing multigrid domain-specific constructs to minimize the verbosity of the algorithm specification;
• storage remapping to reduce the memory footprint of the program and improve cache locality exploitation;
• mitigating execution time spent in data handling operations like memory allocation and freeing, using a pool of memory, across multiple multigrid cycles; and
• incorporating other well-known techniques to leverage performance, like exploiting multi-dimensional parallelism and minimizing the lifetime of storage buffers.
We evaluate our optimizations on a modern multicore system using five different benchmarks varying in multigrid cycle structure, complexity and size, for two-and three-dimensional data grids. Experimental results show that our optimizations:
• improve performance of existing PolyMage optimizer by 1.31x;
• are better than straight-forward parallel and vector implementations by 3.2x;
• are better than hand-optimized versions in conjunction with optimizations by Pluto, a state-of-the-art polyhedral source-to-source optimizer, by 1.23x; and
• achieve up to 1.5$\times$ speedup over NAS MG benchmark from the NAS Parallel Benchmarks.
(The speedup numbers are Geometric means over all benchmarks)
|
Page generated in 0.0824 seconds