Spelling suggestions: "subject:"eometry eometry"" "subject:"eometry ceometry""
31 |
Spin(7)-manifolds and calibrated geometryClancy, Robert January 2012 (has links)
In this thesis we study Spin(7)-manifolds, that is Riemannian 8-manifolds with torsion-free Spin(7)-structures, and Cayley submanifolds of such manifolds. We use a construction of compact Spin(7)-manifolds from Calabi–Yau 4-orbifolds with antiholomorphic involutions, due to Joyce, to find new examples of compact Spin(7)-manifolds. We search the class of well-formed quasismooth hypersurfaces in weighted projective spaces for suitable Calabi–Yau 4-orbifolds. We consider antiholomorphic involutions induced by the restriction of an involution of the ambient weighted projective space and we classify anti-holomorphic involutions of weighted projective spaces. We consider the moduli problem for Cayley submanifolds of Spin(7)-manifolds and show that there is a fine moduli space of unobstructed Cayley submanifolds. This result improves on the work of McLean in that we consider the global issues of how to patch together the local result of McLean. We also use the work of Kriegl and Michor on ‘convenient manifolds’ to show that this moduli space carries a universal family of Cayley submanifolds. Using the analysis necessary for the study of the moduli problem of Cayleys we find examples of compact Cayley submanifolds in any compact Spin(7)-manifold arising, using Joyce’s construction, from a suitable Calabi–Yau 4-orbifold with antiholomorphic involution. For the analysis to work, we need to show that a given Cayley submanifold is unobstructed. To show that particular examples of Cayley submanifolds are unobstructed, we relate the obstructions of complex surfaces in Calabi–Yau 4-folds as complex submanifolds to the obstructions as Cayley submanifolds.
|
32 |
Parametrický geometrický 3D kreslicí nástroj / Parametric Geometry 3D Sketch ToolVala, Jan January 2014 (has links)
Purpose of this thesis is to introduce reader to 3D parametric construction tools and their application with dynamic geometry. Project introduces basic concepts of parametric construction in computer geometry, summary of the state of the art, description of selected parametric geometry software, evaluation of its features and design of 3D parametric geometry library for use in computer graphics followed by implementation of said library and user interface application for evaluation.
|
33 |
Calabi-Yau categories and quivers with superpotentialLam, Yan Ting January 2014 (has links)
This thesis studies derived equivalences between total spaces of vector bundles and dg-quivers. A dg-quiver is a graded quiver whose path algebra is a dg-algebra. A quiver with superpotential is a dg-quiver whose differential is determined by a "function" Φ. It is known that the bounded derived category of representations of quivers with superpotential with finite dimensional cohomology is a Calabi- Yau triangulated category. Hence quivers with superpotential can be viewed as noncommutative Calabi- Yau manifolds. One might then ask if there are derived equivalences between Calabi-Yau manifolds and quivers with superpotential. In this thesis, we answer this question and, generalizing Bridgeland [15], give a recipe on how to construct such derived equivalences.
|
Page generated in 0.0625 seconds