• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tropical aspects of real polynomials and hypergeometric functions

Forsgård, Jens January 2015 (has links)
The present thesis has three main topics: geometry of coamoebas, hypergeometric functions, and geometry of zeros. First, we study the coamoeba of a Laurent polynomial f in n complex variables. We define a simpler object, which we call the lopsided coamoeba, and associate to the lopsided coamoeba an order map. That is, we give a bijection between the set of connected components of the complement of the closed lopsided coamoeba and a finite set presented as the intersection of an affine lattice and a certain zonotope. Using the order map, we then study the topology of the coamoeba. In particular, we settle a conjecture of M. Passare concerning the number of connected components of the complement of the closed coamoeba in the case when the Newton polytope of f has at most n+2 vertices. In the second part we study hypergeometric functions in the sense of Gel'fand, Kapranov, and Zelevinsky. We define Euler-Mellin integrals, a family of Euler type hypergeometric integrals associated to a coamoeba. As opposed to previous studies of hypergeometric integrals, the explicit nature of Euler-Mellin integrals allows us to study in detail the dependence of A-hypergeometric functions on the homogeneity parameter of the A-hypergeometric system. Our main result is a complete description of this dependence in the case when A represents a toric projective curve. In the last chapter we turn to the theory of real univariate polynomials. The famous Descartes' rule of signs gives necessary conditions for a pair (p,n) of integers to represent the number of positive and negative roots of a real polynomial. We characterize which pairs fulfilling Descartes' conditions are realizable up to degree 7, and we provide restrictions valid in arbitrary degree.

Page generated in 0.0462 seconds