• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2130
  • 1151
  • 314
  • 222
  • 190
  • 131
  • 98
  • 52
  • 50
  • 50
  • 49
  • 47
  • 41
  • 38
  • 36
  • Tagged with
  • 5249
  • 1150
  • 990
  • 604
  • 508
  • 476
  • 430
  • 417
  • 399
  • 378
  • 337
  • 316
  • 313
  • 306
  • 296
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

A study of the value of pictures in the teaching of geometry

Kerr, Lester Leo January 1938 (has links)
There is no abstract available for this thesis.
812

An ultrametric geometry

Diodato, Virgil Pasquale January 1977 (has links)
This thesis verified that metric spaces can be constructed using ultrametrics d and D, where d(x,y) = 0 if x = y and d(x,y) = (1/2) k if x not equal to y, such that x-y = 2k(a/b) for a,b relatively prime to 2, and where D(A,B)= max(d(al,bl); d(a2,b2)) for A = (al,a2) and B = (bl,b2).Assuming that a line is represented by some linear equation, a one-dimensional point was defined as an element of Q and a two-dimensional point as an element of Q x Q. There was an investigation of one-dimensional points with respect to the behavior of segments, midpoints, and distances as measured by d. The function D demonstrated the behavior of midpoints, medians, and triangles, as well as the congruence relation. The study necessitated the introduction of pseudomidpoints and pseudomedians, and an unorthodox definition of angle measurement.
813

Algebraic geometry and the Verlinde formula

Thaddeus, Michael January 1992 (has links)
No description available.
814

Hyperkähler and quaternionic Kähler geometry

Swann, Andrew F. January 1990 (has links)
A quaternion-Hermitian manifold, of dimension at least 12, with closed fundamental 4-form is shown to be quaternionic Kähler. A similar result is proved for 8-manifolds. HyperKähler metrics are constructed on the fundamental quaternionic line bundle (with the zero-section removed) of a quaternionic Kähler manifold (indefinite if the scalar curvature is negative). This construction is compatible with the quaternionic Kähler and hyperKähier quotient constructions and allows quaternionic Kähler geometry to be subsumed into the theory of hyperKähler manifolds. It is shown that the hyperKähler metrics that arise admit a certain type of SU(2)- action, possess functions which are Kähler potentials for each of the complex structures simultaneously and determine quaternionic Kähler structures via a variant of the moment map construction. Quaternionic Kähler metrics are also constructed on the fundamental quaternionic line bundle and a twistor space analogy leads to a construction of hyperKähler metrics with circle actions on complex line bundles over Kähler-Einstein (complex) contact manifolds. Nilpotent orbits in a complex semi-simple Lie algebra, with the hyperKähler metrics defined by Kronheimer, are shown to give rise to quaternionic Kähler metrics and various examples of these metrics are identified. It is shown that any quaternionic Kähler manifold with positive scalar curvature and sufficiently large isometry group may be embedded in one of these manifolds. The twistor space structure of the projectivised nilpotent orbits is studied.
815

On the construction of invariant tori and integrable Hamiltonians

Kaasalainen, Mikko K. J. January 1994 (has links)
The main principle of this thesis is to employ the geometric representation of Hamiltonian dynamics: in a broad sense, we study how to construct, in phase space, geometric structures that are related to a dynamical system. More specifically, we study the problem of constructing phase-space tori that are approximate invariant tori of a given Hamiltonian; also, using the constructed tori, we define an integrable Hamiltonian closely approximating the original one. The methods are generally applicable; as examples, we use gravitational potentials that are of interest in stellar dynamics. First, we construct tori for box and loop orbits in planar, barred potentials, thus demonstrating the applicability of the scheme to potentials that have more than one major orbit family. Also, we show that, in general, the construction scheme needs two types of canonical transformations together: point transformations as well as those expressed by generating functions. To complete the construction scheme, we show how to furnish the tori with consistent coordinate systems, i.e., how to recover the angle variables of a torus labelled by its actions. Next, the developed methods are employed in creating invariant phase-space tori in nonintegrable potentials supporting minor-orbit families. These tori are used to define an integrable Hamiltonian H<sub>0</sub>, and a modified form of the standard Hamiltonian perturbation theory is then used to demonstrate that a minor-orbit family can be treated as one made up of orbits trapped by a resonance of H<sub>0</sub>. Finally, we generalize the scheme further by constructing tori in time-reversal asymmetric Hamiltonians (by considering the motion in a rotating frame of reference), and study the transition from locally contained stochasticity to global chaos. Using both near-integrable 'laboratory' Hamiltonians and those for which we construct tori, we investigate the transition in the light of the resonance overlap criterion.
816

The influence of discharge variability on river channel width : a field and laboratory study

Knight, Deborah Ann January 1997 (has links)
No description available.
817

Hermitian varieties over finite fields

Giuzzi, Luca January 2000 (has links)
No description available.
818

Pre-quantization of the Moduli Space of Flat G-bundles

Krepski, Derek 18 February 2010 (has links)
This thesis studies the pre-quantization of quasi-Hamiltonian group actions from a cohomological viewpoint. The compatibility of pre-quantization with symplectic reduction and the fusion product are established, and are used to understand the necessary and sufficient conditions for the pre-quantization of M(G,S), the moduli space of at flat G-bundles over a closed surface S. For a simply connected, compact, simple Lie group G, M(G,S) is known to be pre-quantizable at integer levels. For non-simply connected G, however, integrality of the level is not sufficient for pre-quantization, and this thesis determines the obstruction, namely a certain 3-dimensional cohomology class, that places further restrictions on the underlying level. The levels that admit a pre-quantization of the moduli space are determined explicitly for all non-simply connected, compact, simple Lie groups G. Partial results are obtained for the case of a surface S with marked points. Also, it is shown that via the bijective correspondence between quasi-Hamiltonian group actions and Hamiltonian loop group actions, the corresponding notions of prequantization coincide.
819

Bases for Invariant Spaces and Geometric Representation Theory

Fontaine, Bruce Laurent 11 December 2012 (has links)
Let G be a simple algebraic group. Labelled trivalent graphs called webs can be used to produce invariants in tensor products of minuscule representations. For each web, a configuration space of points in the affine Grassmannian is constructed. This configuration space gives a natural way of calculating the invariant vectors coming from webs. In the case of G = SL_3, non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is CAT(0), is explained by the fact that affine buildings are CAT(0). In the case of G = SL_n, a sufficient condition for a set of webs to yield a basis is given. Using this condition and a generalization of a technique by Westbury, a basis is constructed for SL_n. Due to the geometric Satake correspondence there exists another natural basis of invariants, the Satake basis. This basis arises from the underlying geometry of the affine Grassmannian. There is an upper unitriangular change of basis from the basis constructed above to the Satake basis. An example is constructed showing that the Satake, web and dual canonical basis of the invariant space are all different. The natural action of rotation on tensor factors sends invariant space to invariant space. Since the rotation of web is still a web, the set of vectors coming from webs is fixed by this action. The Satake basis is also fixed, and an explicit geometric and combinatorial description of this action is developed.
820

Generalisations of the fundamental theorem of projective geometry

McCallum, Rupert Gordon, Mathematics & Statistics, Faculty of Science, UNSW January 2009 (has links)
The fundamental theorem of projective geometry states that a mapping from a projective space to itself whose range has a sufficient number of points in general position is a projective transformation possibly combined with a self-homomorphism of the underlying field. We obtain generalisations of this in many directions, dealing with the case where the mapping is only defined on an open subset of the underlying space, or a subset of positive measure, and dealing with many different spaces over many different rings.

Page generated in 0.0609 seconds