• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die ontstaan en menslike benutting van panne aan die Oos-Rand

Le Grange, Christoffel Nicolaas 22 September 2015 (has links)
M.Sc. / This study concentrates, not only on the physical origin of the pans, but also attempts to define certain guidelines which will contribute to an improved urban environment in the future. The series of pans on the East Rand form part of the greater Highveld pans, which extends in an easterly direction to eventually link up with the Lake Chrissie pan series. The study is however limited to those pans appearing on the 1: 50 000 topographical map 2628 AB Benoni ...
2

The evolution of the Molopo drainage

Bootsman, Cornelis Siebe 16 August 2016 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 1998 / The appearance of the dry Molopo River with its generally wide and shallow valley cut into the Kalahari Group sediments, but more especially its few impressive rock-cut gorges, has intrigued many people over the ages, and led to many theories concerning its history. The rock-cut gorges, in particular, have traditionally been attributed to ancient, previously much more extended drainage lines, more or less in the same geographical position as the present Molopo Valley. An analysis of the sediment body of the Kalahari Group, and both, alluvial gravels and geomorphic features on the rim of the Cainozoic Kalahari Basin, have indicated that the Molopo drainage has gradually shifted westward over time, in response to a tilting of the drainage area, which lies across the south-eastern rim of the Kalahari Basin, The present geographical position of the Molopo River is thus a relatively recent one in its evolution. The earliest traces of drainage lines in the area predate the Permo-Carboniferous glaciation of Gondwana. A preglaciation valley system with only some similarities to the present-one flowed in a northwesterly direction. There is a long hiatus in the evidence from the end of the glaciation to the beginning of the formation of the Calnozoic Kalahari Basin. The most significant feature of that intermediate period, is a large meteorite impact which occurred near Morokweng at the J-K boundary. The Cainozoic evolution of the Molopo drainage has been strongly influenced by both tectonics and climatic change. Tectonics, which include both the initial formation of the Kalahari Basin and Neogene warpings of the intra-continental axes of uplift, caused the interruption of a pre- Kalahari southward flowing drainage system, an extended upper Molopo, the existence of the Molopo as an endoreic system for an extended period of time, and a westward shift of the entire Molopo drainage system. Progressively more arid conditions interrupted by humid climatic pulses of decreasing intensity have occurred since the Cretaceous. The aridifying conditions caused the existence of playa-like conditions over long periods oftime in the back-tilted section of the proto-Molopo. This was followed by a rapid sediment infilling of the sub-basin and a major rejuvenation phase, which caused the incision of the Molopo River into the duricrusted sediments of the Kalahari Group, and the re-establishment of the Molopo River as an exoreic drainage system in its present position. Rock-cut terrace remnants in the upper Molopo give evidence of much smaller climatic changes during the Quaternary. There has been no integrated flow in living memory.
3

A geographical study of the Cape Midlands and Eastern Karoo area with reference to the physiography and elements of land use

Badenhorst, J J 14 November 2013 (has links)
The subject has been approached in the conventional geographic manner in successive chapters, Relief, Geology, Soil, Climate, etc. In practice, the relationship between geographic factors and land use is so close that it is usually very difficult to separate the one from the other. When there is any reference to a specific relationship in any chapter, it must be borne in mind that one must always take the other geographic factors into account. In this study the stress falls on an evaluation of the present land use. Even if there is no recommendation regarding the way in which the land should be used, this survey can still be used as the basis for future planning. Intro. p.viii / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
4

A mass movement classification for the southern Drakensberg, South Africa

Hardwick, Devlyn 29 May 2013 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of the requirements for the degree of Doctor of Philosophy Johannesburg, 2012. / A variety of mass movement landforms occur in the southern Drakensberg, South Africa, and whilst a number of studies on individual landforms have been conducted, regional scale assessments of the Ukhahlamba Drakensberg Transfrontier Park have been relatively limited. Mass movement has been defined as the downward and outward movement of slope-forming material under the influence of a transporting agent such as water, air, ice or snow (Goudie, 2004). This includes landforms such as landslides, debris flows, terracettes, solifluction lobes and rockfall. Although two landslide risk assessments have been conducted in the region, one was site specific and focussed on shallow, translational slides (Bijker, 2001), whilst the other was at a much larger regional scale and focused on large palaeo-mass movements (Singh, 2008). Numerous international mass movement classifications have been developed over the years, and one of the primary aims of this research is to develop a classification for mass movement landforms within a southern African context. A number of mass movement landforms were identified, measured and mapped in the field to acquire a better understanding of how the landforms originate. This classification was then further adapted to facilitate the identification of mass movement landforms from orthophotos. Aerial photo interpretation techniques were used to map three terrace-type mass movement landforms and four shear-type mass movement landforms in the Garden Castle State Forest of the Ukhahlamba Drakensberg Transfrontier Park. A further level of detail was added to the classification by ascribing environmental conditions to the different landform types. A Geographic Information System was used to collate and generate spatial information which could be added to the landforms in the mass movement inventory. These were then analysed using univariate and multivariate statistical modelling. Histograms, as well as an area-weighted frequency distribution, were used to describe the landforms and then hierarchical partitioning was used to identify the environmental variables associated with each type of landform. One main environmental variable was identified for each type of mass movement. Logistic regression was then used to create probability maps for each type of landform. An average of 30% of the study area has a medium to very high likelihood of developing mass movements, although this percentage varies for each type, whilst rock movement deposits are predicted to occupy more than 80% of the study area. Gradient, altitude and lithology were selected most frequently by the statistical models as influencing landform distribution, whilst distance to a rock exposure had the strongest influence on the location of rock movement deposits. Aspect was selected least frequently by hierarchical partitioning which raises questions about the influence of aspect on valley asymmetry. Various models have been developed which describe slope development in the Drakensberg with reference to slope aspect, however the results of this study suggest that other environmental factors may be more important and that slope development is a complex process.
5

The development and distribution of heavy mineral concentrations in alluvial systems

Lynn, Michael David January 1992 (has links)
The objective of this review is to summarise the characteristics, significance and evolution of heavy minerals and their accumulations, and to identify the key controls on the development and distribution of heavy mineral concentrations in alluvial systems. These controls can be broadly classified as tectonic setting, geomorphic setting and grain-scale concentrating processes, each of which is discussed. Based on this review, exploration models are developed which are designed to indicate favourable localities for the accumulation of heavy minerals, and trends likely to be exhibited within these accumulations. The models are structured from the broadest scale of target selection, down to the local scale of sample site selection. The major conclusion of this work is that an understanding of process geomorphology is required to develop genetic models of placer development, including a detailed evaluation of climatic fluctuations throughout the Caenozoic. Palaeoplacers such as the Witwatersrand goldfield, are inferred to have formed under similar circumstances of tectonic setting as genetically comparable Caenozoic placers such as those of Otago, New Zealand. The means of preservation of such major basins is however poorly understood.
6

The response of the two interrelated river components, geomorphology and riparian vegetation, to interbasin water transfers in the Orange-Fish-Sundays River Interbasin Transfer Scheme

Du Plessis, A J E January 2000 (has links)
The Skoenmakers River (located in the semi-arid Karoo region of the Eastern Cape) is being used as a transfer route for water transferred by the Orange-Fish-Sundays River Interbasin Transfer Scheme. The change in the hydrological regime of this once ephemeral stream to a much bigger perennial river led to dramatic changes to both the physical structure and riparian vegetation structure of the river system. These changes differ for each of the three river sections, the upper,middle and lower reaches. Qualitative, descriptive geomorphological data was gathered by means of field observations and this was then compared to the quantitative data collected by means of surveyed cross-sectional profiles at selected sites along the length of both the regulated Skoenmakers River and a nonregulated tributary of equivalent size, the Volkers River. Riparian vegetation data was gathered by means of plot sampling along belt transects at each site. A qualitative assessment of the vegetation conditions was also made at each site and then added to the quantitative data from the plot sampling. At each site the different morphological units were identified along the cross-section and changes in the vegetation and sediment composition were recorded. Aerial photographs were used as additional sources of data and observations made from these were compared to data gathered in the field. The pre-IBT channel in this river section was formed by low frequency flood flows but the hydrological regime has now been converted to base flows much higher than normal flood flows. Severe incision, erosion and degradation of both the channel bed and banks occurred. In the lower reaches, post-IBT base flows are lower than pre-IBT flood flows and, due to the increased catchment area, the impact of the IBT was better ‘absorbed’ by the river system. Aggradation and deposition increased for the regulated river in comparison to the non-regulated river due to more sediment introduced The IBT had the greatest impact in the upper reaches of the regulated river due to more sediment introduced at the top of the system.
7

The morphology and sedimentology of two unconsolidated quaternary debris slope deposits in the Alexandria district, Cape Province

Illgner, Peter Mark January 1995 (has links)
Research on hillslope surface processes and hillslope stratigraphy has been neglected in southern Africa. The amount of published literature on hillslope stratigraphy in southern Africa is very limited. Hillslope sediments provide a record of past environmental conditions and may be especially useful in calculating the recurrence interval of extreme environmental conditions such as earthquakes and intense rainfall events. The characteristics of hillslope sediments provide information as to their origin, transport and mechanisms of deposition. No published work could be found that had been undertaken on hillslope surface processes or stratigraphy in the eastern Cape coastal region. This study attempted to fill this gap in the geomorphic literature for southern Africa. The surface processes acting on hillslopes at Burchleigh and Spring Grove in the Alexandria district of the eastern Cape were examined in terms of slope morphology, surface sediment characteristics and the internal geometry of the hillslope sedimentary deposits. The late Quaternary hillslope sedimentary deposits at the two study sites are composed of fine grained colluvial sediments intercalated with highly lenticular diamicts. The fine grained colluvial sediments were emplaced by overland flow processes while the diamicts were deposited by debris flows. The sedimentary sequences at both study sites have a basal conglomerate interpreted as a channel lag deposit. Most slope failures preceding debris flow events were probably triggered by intense or extended periods of rainfall associated with cold fronts or cut-of flows. Seismic events may also have triggered slope failure, with or without the hillslope sediments being saturated. The results of this study indicate that a continuum exists between the slopewash dominated processes of the presently summer rainfall regions of Natal to the present winter rainfall regions of the western Cape where mass movement processes are significant. Hillslope deposits, therefore, provide a record of environmental conditions which may greatly facilitate proper management of the landscape.
8

The geomorphological impacts of impoundments, with particular reference to tributary bar development on the Keiskamma River, Eastern Cape

McGregor, Gillian Kathleen January 2000 (has links)
The primary aim of this research was to develop and test a conceptual model of the geomorphological impacts of river regulation, based on a review of relevant international literature. It was motivated by the fact that there is very little local information on the topic, and it was intended that the model might provide a starting point for assessing the impact of impoundments on South African river systems. At present most research in South Africa on the impact of impoundments is undertaken from an ecological perspective. In order to manage our water resources sustainably it is necessary to have a better understanding of our river systems. South Africa is characterised by a variable climatic regime and, in order to supply water to the various user sectors of the nation, dams have to be larger than elsewhere in the world, to trap most of the mean annual runoff and provide a reliable water store (Alexander, 1985). South African dams have been designed to reduce the variability of a naturally variable regime. The impact of flow regulation in dryland rivers has been described as 'ecologically catastrophic at every level.' It is therefore hardly surprising that the impact of these dams on the natural functioning of rivers is substantial. The conceptual model showed that there are many responses to river impoundment, which are varied and complex, both in time and space. Responses or secondary impacts depended on the nature and degree of the primary impact or process alteration, on the sediment and flow regime of the river. High flows were affected in all cases and low flows were affected in most cases. The simplest form of change was Petts' (1979) concept of 'accommodation' of the regulated flow within the existing channel form. More complex responses occUrred where the channel perimeter was unstable, or where tributaries introduced fresh sediment loads. The river could adjust its long profile, cross sectional area and substrate composition by aggradation or degradation. The conceptual model was used in the Building Block Methodology to predict impoundment impacts at Instream Flow Requirement workshops on the Berg, Komati and Bivane rivers. It was also used in assessing the impact of the Sandile Dam on the Keiskamma river. Tributary junctions were identified as likely sites of change, and the morphology of bars at these junctions was investigated. Due to the number of variables affecting the sediment and flow regime in the system, and due to the fact that the primary impacts were not substantial, it was not possible to come to any decisive conclusions. It would seem that the dam is well located in the catchment, and, because the water is not heavily utilised, the secondary impacts are not great. The conceptual model was found to be a useful basic tool which might contribute to a better understanding of our river systems, and ultimately to improved sustainable resource management.
9

The effect of water and sediment quality on macro-invertebrate communities from selected endorheic pans

Foster, Lee-Ann Sade 30 June 2014 (has links)
M.Sc. (Environmental Management) / Wetlands play a significant role in our environment as they provide a variety of goods, services and benefits to living species ranging from humans, animals and plants to microorganisms. Despite their importance, wetlands have somewhat been neglected over the past few years which has led to a rapid deterioration of wetland conditions and functions. Wetlands provide unique functions that cannot be provided by any other ecosystem; their value was recognised in the 1960s. Prior to this realisation the value of wetlands had been seriously underestimated to the extent where they were even previously labelled as “wastelands”. The reality is that to date minimal measures have been put in place to assist in the rehabilitation and future conservation of wetlands. The lack of wetland management and monitoring can be attributed to the fact that very little is known about the functioning of some of the wetland systems. Endorheic wetlands have recently been emerging as ecosystems of importance. Very little is known about endorheic wetlands and their ecological functioning. To date a fair amount of studies have been conducted on the pans in Mpumalanga and in the Free State but minimal information exists on the pans in the North West Province. The objectives of this study were therefore to compare the abiotic and biotic composition of pans in Mpumalanga and North West Provinces, in order to contribute to the knowledge which will eventually assist in devising rehabilitation measures and future conservation of pans in the area. Three different water ecosystem components were studied; these included aquatic invertebrate communities, water quality and sediment characteristics. The collected water samples were taken to an accredited laboratory to be analysed. When compared between the two provinces, the water-quality results indicated differences between provinces as well as among individual pans. However, most of the pans in both provinces show characteristics of being dystrophic alkaline systems. The invertebrates were collected using sweep nets and stored in jars containing 5% neutrally buffered formalin and a staining agent (Rose Bengal). The sediment characteristics were determined by using standard techniques and results showed that there were no obvious similarities between the different pans in the different provinces. Water-quality analyses were performed on samples taken during both winter- and summer-sampling surveys and these samples were analysed by a reputable laboratory. Based on the analyses of the invertebrate community samples, 25 taxa were identified; results show similarities in the structure of communities in both provinces with the exception of one or two different species. Sampling was conducted over a period of two seasons at all sampling points and several species were found belonging to different families. Invertebrates sampled in Mpumalanga pans were similar to those reported in previous studies done in the area and most of the invertebrates sampled in Mpumalanga and the North West are known to be commonly found in temporary habitats. Spatial and temporal variations in invertebrate assemblages were determined; this analysis displayed differences in the different variables (biotic, physical and chemical) tested over the two seasons. The pans in Mpumalanga were dominated by coarse sand. Large amounts of coarse sand accompanied by poor water quality were observed in MP Pan A in Mpumalanga Province; this could be an indication of somewhat poor catchment management. The results of the abiotic and biotic comparison show that there are minor similarities and differences among the selected pans studied in each province. The knowledge acquired can now be utilised to enhance the available literature on these pans. Long-term studies have to be done to better understand the ecological functioning of the pans in the North West Province in order to devise mitigation measures as well as appropriate rehabilitation strategies and conservation measures.
10

Physico-chemical characteristics of water and sediment of pans in the western Free State and the bioaccumulation of toxicants

Theunissen, Marlize 15 July 2014 (has links)
M.Sc. (Aquatic Health) / Wetlands play an extremely important role in the hydrological cycle as well as biodiversity. Until recently, however, wetlands in South Africa have been neglected both in terms of research and monitoring. The lack of knowledge is even greater for the inward draining wetlands, which is better known as pans. Pans are isolated aquatic systems, which are quite shallow and do not have an outlet. Pans receive water from precipitation and surface runoff, and lose water mainly through evaporation. Some pans can be ephemeral (dry up often) and other perennial (dry up only during drought). The little ecological knowledge available is mainly focused on these ephemeral pans. In this present study conducted in the Western Free-State province, study was only focused on the perennial pans in this area. Due to the fact that this province are one of the biggest areas for gold mining in the country, the pans suffer under the impacts, and this results in the alteration of community structures in and around the pan, simplifying food chains which can lead to the collapse of an ecosystem. The aim of the study was to assess the water quality, bioaccumulation of toxicants (metals and pesticides) in sediment and aquatic invertebrate community of perennial pans in the Western Free State Province, mainly because of the lack of literature on pans in these areas. Seventeen pans were selected for the study of which eight were classified as saline eutrophic and nine as alkaline dystrophic. Various physico-chemical and sediment characteristics were assessed in addition to the characterization of the aquatic invertebrate communities. It became clear that there is great difference in the physical-chemical characteristics of the selected pans. The difference in the trophic state was the most clear, with differences in water colour, nutrient concentration and vegetation growth, classifying pans as either saline eutrophic or alkaline dystrophic. These trophic states influence the distribution and richness of aquatic invertebrates in certain pans. Mining activity, urbanization, agricultural activities and sewage runoff into the pan, all affects the pans negatively, there is sighs of water quality degradation as well as changes in the community structure of invertebrates when compared to the reference pans.

Page generated in 0.0641 seconds